These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 29159587)
1. Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli. Wurm DJ; Quehenberger J; Mildner J; Eggenreich B; Slouka C; Schwaighofer A; Wieland K; Lendl B; Rajamanickam V; Herwig C; Spadiut O Appl Microbiol Biotechnol; 2018 Jan; 102(2):667-676. PubMed ID: 29159587 [TBL] [Abstract][Full Text] [Related]
2. Wanted: more monitoring and control during inclusion body processing. Humer D; Spadiut O World J Microbiol Biotechnol; 2018 Oct; 34(11):158. PubMed ID: 30341583 [TBL] [Abstract][Full Text] [Related]
3. Dynamic transcriptional response of Escherichia coli to inclusion body formation. Baig F; Fernando LP; Salazar MA; Powell RR; Bruce TF; Harcum SW Biotechnol Bioeng; 2014 May; 111(5):980-99. PubMed ID: 24338599 [TBL] [Abstract][Full Text] [Related]
4. Production of Active Recombinant Hyaluronidase Inclusion Bodies from Schwaighofer A; Ablasser S; Lux L; Kopp J; Herwig C; Spadiut O; Lendl B; Slouka C Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485932 [TBL] [Abstract][Full Text] [Related]
5. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
6. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Castellanos-Mendoza A; Castro-Acosta RM; Olvera A; Zavala G; Mendoza-Vera M; García-Hernández E; Alagón A; Trujillo-Roldán MA; Valdez-Cruz NA Microb Cell Fact; 2014 Sep; 13():137. PubMed ID: 25213001 [TBL] [Abstract][Full Text] [Related]
7. Solubilization and refolding of inclusion body proteins. Singh A; Upadhyay V; Panda AK Methods Mol Biol; 2015; 1258():283-91. PubMed ID: 25447870 [TBL] [Abstract][Full Text] [Related]
8. [Influence of the reductase deficient Escherichia coli on the solubility of recombinant proteins produced in it]. Xiong S; Zhang MY; Qian CW; Ran YC; Wang YF; Ren XR; Su KY; Yu ZY Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):686-91. PubMed ID: 15971580 [TBL] [Abstract][Full Text] [Related]
9. Quality control of inclusion bodies in Escherichia coli. Jürgen B; Breitenstein A; Urlacher V; Büttner K; Lin H; Hecker M; Schweder T; Neubauer P Microb Cell Fact; 2010 May; 9():41. PubMed ID: 20509924 [TBL] [Abstract][Full Text] [Related]
10. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake. Wurm DJ; Veiter L; Ulonska S; Eggenreich B; Herwig C; Spadiut O Appl Microbiol Biotechnol; 2016 Oct; 100(20):8721-9. PubMed ID: 27229726 [TBL] [Abstract][Full Text] [Related]
11. Efficient solubilization of inclusion bodies. Freydell EJ; Ottens M; Eppink M; van Dedem G; van der Wielen L Biotechnol J; 2007 Jun; 2(6):678-84. PubMed ID: 17492713 [TBL] [Abstract][Full Text] [Related]
12. Functional protein aggregates: just the tip of the iceberg. Villaverde A; Corchero JL; Seras-Franzoso J; Garcia-Fruitós E Nanomedicine (Lond); 2015; 10(18):2881-91. PubMed ID: 26370294 [TBL] [Abstract][Full Text] [Related]
13. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies. Padhiar AA; Chanda W; Joseph TP; Guo X; Liu M; Sha L; Batool S; Gao Y; Zhang W; Huang M; Zhong M Appl Microbiol Biotechnol; 2018 Mar; 102(5):2363-2377. PubMed ID: 29387954 [TBL] [Abstract][Full Text] [Related]
14. Detailed small-scale characterization and scale-up of active YFP inclusion body production with Escherichia coli induced by a tetrameric coiled coil domain. Lamm R; Jäger VD; Heyman B; Berg C; Cürten C; Krauss U; Jaeger KE; Büchs J J Biosci Bioeng; 2020 Jun; 129(6):730-740. PubMed ID: 32143998 [TBL] [Abstract][Full Text] [Related]
15. Refolding of Proteins Expressed as Inclusion Bodies in E. coli. Sharma R; Anupa A; Rathore AS Methods Mol Biol; 2023; 2617():201-208. PubMed ID: 36656526 [TBL] [Abstract][Full Text] [Related]
16. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations. Metzger KFJ; Padutsch W; Pekarsky A; Kopp J; Voloshin AM; Kühnel H; Maurer M J Biotechnol; 2020 Mar; 312():23-34. PubMed ID: 32114153 [TBL] [Abstract][Full Text] [Related]
17. Custom made inclusion bodies: impact of classical process parameters and physiological parameters on inclusion body quality attributes. Slouka C; Kopp J; Hutwimmer S; Strahammer M; Strohmer D; Eitenberger E; Schwaighofer A; Herwig C Microb Cell Fact; 2018 Sep; 17(1):148. PubMed ID: 30236107 [TBL] [Abstract][Full Text] [Related]
18. Lactose autoinduction with enzymatic glucose release: characterization of the cultivation system in bioreactor. Mayer S; Junne S; Ukkonen K; Glazyrina J; Glauche F; Neubauer P; Vasala A Protein Expr Purif; 2014 Feb; 94():67-72. PubMed ID: 24215862 [TBL] [Abstract][Full Text] [Related]
19. Expression of membrane beta-barrel protein in E. coli at low temperatures: Structure of Yersinia pseudotuberculosis OmpF porin inclusion bodies. Solov'eva TF; Bakholdina SI; Khomenko VA; Sidorin EV; Kim NY; Novikova OD; Shnyrov VL; Stenkova AM; Eremeev VI; Bystritskaya EP; Isaeva MP Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183971. PubMed ID: 35643329 [TBL] [Abstract][Full Text] [Related]
20. Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Wingfield PT; Palmer I; Liang SM Curr Protoc Protein Sci; 2001 May; Chapter 6():Unit 6.5. PubMed ID: 18429192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]