BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29159728)

  • 21. Decellularization of porcine whole lung to obtain a clinical-scale bioengineered scaffold.
    Li Y; Wu Q; Li L; Chen F; Bao J; Li W
    J Biomed Mater Res A; 2021 Sep; 109(9):1623-1632. PubMed ID: 33682365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human-Scale Liver Harvest and Decellularization for Preclinical Research.
    Tajima K; Yagi H; Kitagawa Y
    Methods Mol Biol; 2018; 1577():327-335. PubMed ID: 30187399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.
    Poornejad N; Nielsen JJ; Morris RJ; Gassman JR; Reynolds PR; Roeder BL; Cook AD
    J Biomater Appl; 2016 Mar; 30(8):1154-67. PubMed ID: 26589294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development.
    Uzarski JS; Su J; Xie Y; Zhang ZJ; Ward HH; Wandinger-Ness A; Miller WM; Wertheim JA
    J Vis Exp; 2015 Aug; (102):e53271. PubMed ID: 26327609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decellularization with triton X-100 provides a suitable model for human kidney bioengineering using human mesenchymal stem cells.
    Shahraki S; Bideskan AE; Aslzare M; Tavakkoli M; Bahrami AR; Hosseinian S; Matin MM; Rad AK
    Life Sci; 2022 Apr; 295():120167. PubMed ID: 34822795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal bioengineering with scaffolds generated from human kidneys.
    Katari R; Peloso A; Zambon JP; Soker S; Stratta RJ; Atala A; Orlando G
    Nephron Exp Nephrol; 2014; 126(2):119. PubMed ID: 24854653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decellularization of Large Tendon Specimens: Combination of Manually Performed Freeze-Thaw Cycles and Detergent Treatment.
    Roth SP; Erbe I; Burk J
    Methods Mol Biol; 2018; 1577():227-237. PubMed ID: 28702884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries.
    Cheng J; Wang C; Gu Y
    Biomed Mater Eng; 2019; 30(2):191-205. PubMed ID: 30741667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decellularization of Liver and Organogenesis in Rats.
    Shirakigawa N; Ijima H
    Methods Mol Biol; 2018; 1577():271-281. PubMed ID: 28808979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Optimization of preparation of rat kidney decellularized scaffold by combining freeze-thawing with perfusion].
    Hu D; Zhang D; Liu B; Zhou Y; Yu Y; Shen L; Long C; Liu X; Lin T; He D; Wei G
    Sheng Wu Gong Cheng Xue Bao; 2019 Feb; 35(2):307-318. PubMed ID: 30806061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organ reconstruction: Dream or reality for the future.
    Stoltz JF; Zhang L; Ye JS; De Isla N
    Biomed Mater Eng; 2017; 28(s1):S121-S127. PubMed ID: 28372287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An approach to preparing decellularized whole liver organ scaffold in rat.
    Ye JS; Stoltz JF; de Isla N; Liu Y; Yin YF; Zhang L
    Biomed Mater Eng; 2015; 25(1 Suppl):159-66. PubMed ID: 25538066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular Matrix from Whole Porcine Heart Decellularization for Cardiac Tissue Engineering.
    Hodgson MJ; Knutson CC; Momtahan N; Cook AD
    Methods Mol Biol; 2018; 1577():95-102. PubMed ID: 28456953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of perfusion decellularized whole animal body, isolated organs, and multi-organ systems for tissue engineering applications.
    Taylor DA; Kren SM; Rhett K; Robertson MJ; Morrissey J; Rodriguez OE; Virk H; Chacon-Alberty L; Curty da Costa E; Mesquita FCP; Sampaio LC; Hochman-Mendez C
    Physiol Rep; 2021 Jun; 9(12):e14817. PubMed ID: 34184419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering.
    Hussein KH; Saleh T; Ahmed E; Kwak HH; Park KM; Yang SR; Kang BJ; Choi KY; Kang KS; Woo HM
    J Biomed Mater Res A; 2018 Jul; 106(7):2034-2047. PubMed ID: 29569325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.
    Ma J; Ju Z; Yu J; Qiao Y; Hou C; Wang C; Hei F
    ASAIO J; 2018; 64(3):406-414. PubMed ID: 28863041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of nanoparticles into transplantable decellularized matrices: Applications and challenges.
    Saleh TM; Ahmed EA; Yu L; Kwak HH; Hussein KH; Park KM; Kang BJ; Choi KY; Kang KS; Woo HM
    Int J Artif Organs; 2018 Aug; 41(8):421-430. PubMed ID: 29807488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current status and future prospects of decellularized kidney tissue.
    Nishimura Y
    J Artif Organs; 2023 Sep; 26(3):171-175. PubMed ID: 36138180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation.
    Caralt M; Uzarski JS; Iacob S; Obergfell KP; Berg N; Bijonowski BM; Kiefer KM; Ward HH; Wandinger-Ness A; Miller WM; Zhang ZJ; Abecassis MM; Wertheim JA
    Am J Transplant; 2015 Jan; 15(1):64-75. PubMed ID: 25403742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative characterization of decellularized renal scaffolds for tissue engineering.
    Fischer I; Westphal M; Rossbach B; Bethke N; Hariharan K; Ullah I; Reinke P; Kurtz A; Stachelscheid H
    Biomed Mater; 2017 Jul; 12(4):045005. PubMed ID: 28396578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.