BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 29159826)

  • 1. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders.
    Lohani N; Bhargava N; Munshi A; Ramalingam S
    J Cell Physiol; 2018 Jun; 233(6):4563-4577. PubMed ID: 29159826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease.
    Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M
    Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
    Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ
    Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease.
    Cui S; Engel JD
    Adv Exp Med Biol; 2017; 1013():177-202. PubMed ID: 29127681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.
    Thein SL
    Adv Exp Med Biol; 2017; 1013():27-57. PubMed ID: 29127676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches.
    Sripichai O; Fucharoen S
    Expert Rev Hematol; 2016 Dec; 9(12):1129-1137. PubMed ID: 27801605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal haemoglobin induction in sickle cell disease.
    Paikari A; Sheehan VA
    Br J Haematol; 2018 Jan; 180(2):189-200. PubMed ID: 29143315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted therapeutic strategies for fetal hemoglobin induction.
    Sankaran VG
    Hematology Am Soc Hematol Educ Program; 2011; 2011():459-65. PubMed ID: 22160074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient therapeutic gene editing of human hematopoietic stem cells.
    Wu Y; Zeng J; Roscoe BP; Liu P; Yao Q; Lazzarotto CR; Clement K; Cole MA; Luk K; Baricordi C; Shen AH; Ren C; Esrick EB; Manis JP; Dorfman DM; Williams DA; Biffi A; Brugnara C; Biasco L; Brendel C; Pinello L; Tsai SQ; Wolfe SA; Bauer DE
    Nat Med; 2019 May; 25(5):776-783. PubMed ID: 30911135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing for the β-Hemoglobinopathies.
    Porteus MH
    Adv Exp Med Biol; 2017; 1013():203-217. PubMed ID: 29127682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin.
    Bauer DE; Orkin SH
    Curr Opin Genet Dev; 2015 Aug; 33():62-70. PubMed ID: 26375765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the fetal hemoglobin silencing factor BCL11A.
    Basak A; Sankaran VG
    Ann N Y Acad Sci; 2016 Mar; 1368(1):25-30. PubMed ID: 26963603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological induction of fetal hemoglobin in sickle cell disease and beta-thalassemia.
    Atweh GF; Loukopoulos D
    Semin Hematol; 2001 Oct; 38(4):367-73. PubMed ID: 11605172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease.
    Liu L; Pertsemlidis A; Ding LH; Story MD; Steinberg MH; Sebastiani P; Hoppe C; Ballas SK; Pace BS
    Exp Biol Med (Maywood); 2016 Apr; 241(7):706-18. PubMed ID: 27022141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The therapeutic reactivation of fetal haemoglobin.
    Olivieri NF; Weatherall DJ
    Hum Mol Genet; 1998; 7(10):1655-8. PubMed ID: 9735388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy for sickle cell disease.
    The Lancet Haematology
    Lancet Haematol; 2016 Oct; 3(10):e446. PubMed ID: 27692301
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.