BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 29159826)

  • 21. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34
    Lamsfus-Calle A; Daniel-Moreno A; Antony JS; Epting T; Heumos L; Baskaran P; Admard J; Casadei N; Latifi N; Siegmund DM; Kormann MSD; Handgretinger R; Mezger M
    Sci Rep; 2020 Jun; 10(1):10133. PubMed ID: 32576837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic association studies in β-hemoglobinopathies.
    Thein SL
    Hematology Am Soc Hematol Educ Program; 2013; 2013():354-61. PubMed ID: 24319204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic approaches to identifying targets for treating β hemoglobinopathies.
    Ngo DA; Steinberg MH
    BMC Med Genomics; 2015 Jul; 8():44. PubMed ID: 26215470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.
    Breda L; Casu C; Gardenghi S; Bianchi N; Cartegni L; Narla M; Yazdanbakhsh K; Musso M; Manwani D; Little J; Gardner LB; Kleinert DA; Prus E; Fibach E; Grady RW; Giardina PJ; Gambari R; Rivella S
    PLoS One; 2012; 7(3):e32345. PubMed ID: 22479321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovering the genetics underlying foetal haemoglobin production in adults.
    Thein SL; Menzel S
    Br J Haematol; 2009 May; 145(4):455-67. PubMed ID: 19344402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Progress in Gene Therapy and Other Targeted Therapeutic Approaches for Beta Thalassemia.
    Hamed EM; Meabed MH; Aly UF; Hussein RRS
    Curr Drug Targets; 2019; 20(16):1603-1623. PubMed ID: 31362654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The switch from fetal to adult hemoglobin.
    Sankaran VG; Orkin SH
    Cold Spring Harb Perspect Med; 2013 Jan; 3(1):a011643. PubMed ID: 23209159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania.
    Nkya S; Mwita L; Mgaya J; Kumburu H; van Zwetselaar M; Menzel S; Mazandu GK; Sangeda R; Chimusa E; Makani J
    BMC Med Genet; 2020 Jun; 21(1):125. PubMed ID: 32503527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of fetal hemoglobin production in adult red blood cells.
    Khandros E; Blobel GA
    Curr Opin Hematol; 2021 May; 28(3):164-170. PubMed ID: 33631783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis of β thalassemia and potential therapeutic targets.
    Thein SL
    Blood Cells Mol Dis; 2018 May; 70():54-65. PubMed ID: 28651846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Genetic Therapy for Sickle Cell Disease.
    Orkin SH; Bauer DE
    Annu Rev Med; 2019 Jan; 70():257-271. PubMed ID: 30355263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype.
    Weber L; Frati G; Felix T; Hardouin G; Casini A; Wollenschlaeger C; Meneghini V; Masson C; De Cian A; Chalumeau A; Mavilio F; Amendola M; Andre-Schmutz I; Cereseto A; El Nemer W; Concordet JP; Giovannangeli C; Cavazzana M; Miccio A
    Sci Adv; 2020 Feb; 6(7):. PubMed ID: 32917636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene editing for sickle cell disease and transfusion dependent thalassemias- A cure within reach.
    Eckrich MJ; Frangoul H
    Semin Hematol; 2023 Jan; 60(1):3-9. PubMed ID: 37080708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo.
    Psatha N; Georgakopoulou A; Li C; Nandakumar V; Georgolopoulos G; Acosta R; Paschoudi K; Nelson J; Chee D; Athanasiadou A; Kouvatsi A; Funnell APW; Lieber A; Yannaki E; Papayannopoulou T
    Blood; 2021 Oct; 138(17):1540-1553. PubMed ID: 34086867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Future prospects for treatment of hemoglobinopathies.
    Stamatoyannopoulos JA
    West J Med; 1992 Dec; 157(6):631-6. PubMed ID: 1282285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fetal Hemoglobin Regulation in Beta-Thalassemia.
    Lu HY; Orkin SH; Sankaran VG
    Hematol Oncol Clin North Am; 2023 Apr; 37(2):301-312. PubMed ID: 36907604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical variability and molecular characterization of Hbs/Gγ (Aγδβ)0-thal and Hbs/HPFH in Indian sickle cell disease patients: AIIMS experience.
    Pandey H; Singh K; Ranjan R; Pandey SK; Sharma A; Kishor K; Seth T; Mahapatra M; Saxena R
    Hematology; 2019 Dec; 24(1):349-352. PubMed ID: 30777489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular genetics of β-thalassemia: A narrative review.
    Jaing TH; Chang TY; Chen SH; Lin CW; Wen YC; Chiu CC
    Medicine (Baltimore); 2021 Nov; 100(45):e27522. PubMed ID: 34766559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.