BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29159981)

  • 1. Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach.
    de Ruijter JC; Koskela EV; Nandania J; Frey AD; Velagapudi V
    Yeast; 2018 Apr; 35(4):331-341. PubMed ID: 29159981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production.
    Kazemi Seresht A; Cruz AL; de Hulster E; Hebly M; Palmqvist EA; van Gulik W; Daran JM; Pronk J; Olsson L
    Biotechnol Bioeng; 2013 Oct; 110(10):2749-63. PubMed ID: 23568816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture.
    van Rensburg E; den Haan R; Smith J; van Zyl WH; Görgens JF
    Appl Microbiol Biotechnol; 2012 Oct; 96(1):197-209. PubMed ID: 22526794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of antibody production in Saccharomyces cerevisiae: effects of ER protein quality control disruption.
    de Ruijter JC; Frey AD
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9061-71. PubMed ID: 26184977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins.
    Mendes I; Sanchez I; Franco-Duarte R; Camarasa C; Schuller D; Dequin S; Sousa MJ
    BMC Genomics; 2017 Jun; 18(1):455. PubMed ID: 28595605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells.
    Chong WP; Thng SH; Hiu AP; Lee DY; Chan EC; Ho YS
    Biotechnol Bioeng; 2012 Dec; 109(12):3103-11. PubMed ID: 22711553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants.
    Yoshida R; Tamura T; Takaoka C; Harada K; Kobayashi A; Mukai Y; Fukusaki E
    Aging Cell; 2010 Aug; 9(4):616-25. PubMed ID: 20550517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation.
    Bu X; Sun L; Shang F; Yan G
    PLoS One; 2017; 12(11):e0188385. PubMed ID: 29161329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast.
    Rossouw D; Naes T; Bauer FF
    BMC Genomics; 2008 Nov; 9():530. PubMed ID: 18990252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture.
    Chong WP; Goh LT; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3763-71. PubMed ID: 19902412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
    Mo ML; Palsson BO; Herrgård MJ
    BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase.
    Ždralević M; Longo V; Guaragnella N; Giannattasio S; Timperio AM; Zolla L
    Mol Biosyst; 2015 Jun; 11(6):1573-83. PubMed ID: 25697364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The integrated response of primary metabolites to gene deletions and the environment.
    Ewald JC; Matt T; Zamboni N
    Mol Biosyst; 2013 Mar; 9(3):440-6. PubMed ID: 23340584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production.
    de Ruijter JC; Jurgens G; Frey AD
    FEMS Yeast Res; 2017 Jan; 17(1):. PubMed ID: 27956492
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.