BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29160014)

  • 1. Loss of tenascin X gene function impairs injury-induced stromal angiogenesis in mouse corneas.
    Sumioka T; Iwanishi H; Okada Y; Nidegawa Y; Miyajima M; Matsumoto KI; Saika S
    J Cell Mol Med; 2018 Feb; 22(2):948-956. PubMed ID: 29160014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired angiogenic response in the cornea of mice lacking tenascin C.
    Sumioka T; Fujita N; Kitano A; Okada Y; Saika S
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2462-7. PubMed ID: 21087965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous TNFalpha suppression of neovascularization in corneal stroma in mice.
    Fujita S; Saika S; Kao WW; Fujita K; Miyamoto T; Ikeda K; Nakajima Y; Ohnishi Y
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3051-5. PubMed ID: 17591872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired angiogenic response in the corneas of mice lacking osteopontin.
    Fujita N; Fujita S; Okada Y; Fujita K; Kitano A; Yamanaka O; Miyamoto T; Kon S; Uede T; Rittling SR; Denhardt DT; Saika S
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):790-4. PubMed ID: 19741245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of neovascularization in corneal stroma in a TRPA1-null mouse.
    Usui-Kusumoto K; Iwanishi H; Ichikawa K; Okada Y; Sumioka T; Miyajima M; Liu CY; Reinach PS; Saika S
    Exp Eye Res; 2019 Apr; 181():90-97. PubMed ID: 30633924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization.
    Lu P; Li L; Liu G; Baba T; Ishida Y; Nosaka M; Kondo T; Zhang X; Mukaida N
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3516-26. PubMed ID: 22570350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH oxidase 2 plays a role in experimental corneal neovascularization.
    Chan EC; van Wijngaarden P; Chan E; Ngo D; Wang JH; Peshavariya HM; Dusting GJ; Liu GS
    Clin Sci (Lond); 2016 May; 130(9):683-96. PubMed ID: 26814205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired cornea wound healing in a tenascin C-deficient mouse model.
    Sumioka T; Kitano A; Flanders KC; Okada Y; Yamanaka O; Fujita N; Iwanishi H; Kao WW; Saika S
    Lab Invest; 2013 Feb; 93(2):207-17. PubMed ID: 23207449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts.
    Ikuta T; Ariga H; Matsumoto KI
    Biol Pharm Bull; 2001 Nov; 24(11):1320-3. PubMed ID: 11725972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist.
    Lu P; Li L; Liu G; Zhang X; Mukaida N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4761-8. PubMed ID: 19458323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of sphingosine 1-phosphate receptor 3 gene function impairs injury-induced stromal angiogenesis in mouse cornea.
    Yasuda S; Sumioka T; Iwanishi H; Okada Y; Miyajima M; Ichikawa K; Reinach PS; Saika S
    Lab Invest; 2021 Feb; 101(2):245-257. PubMed ID: 33199821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix tenascin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation.
    Ikuta T; Ariga H; Matsumoto K
    Genes Cells; 2000 Nov; 5(11):913-927. PubMed ID: 11122379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen.
    Minamitani T; Ariga H; Matsumoto K
    Exp Cell Res; 2004 Jul; 297(1):49-60. PubMed ID: 15194424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wound healing-related properties detected in an experimental model with a collagen gel contraction assay are affected in the absence of tenascin-X.
    Hashimoto K; Kajitani N; Miyamoto Y; Matsumoto KI
    Exp Cell Res; 2018 Feb; 363(1):102-113. PubMed ID: 29291401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional role of decorin in corneal neovascularization in vivo.
    Balne PK; Gupta S; Zhang J; Bristow D; Faubion M; Heil SD; Sinha PR; Green SL; Iozzo RV; Mohan RR
    Exp Eye Res; 2021 Jun; 207():108610. PubMed ID: 33940009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells.
    Ma X; Ottino P; Bazan HE; Bazan NG
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):2915-21. PubMed ID: 15326102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Netrin-4 Mediates Corneal Hemangiogenesis but Not Lymphangiogenesis in the Mouse-Model of Suture-Induced Neovascularization.
    Maier AB; Klein S; Kociok N; Riechardt AI; Gundlach E; Reichhart N; Strauß O; Joussen AM
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1387-1396. PubMed ID: 28253401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.
    Okada Y; Shirai K; Miyajima M; Reinach PS; Yamanaka O; Sumioka T; Kokado M; Tomoyose K; Saika S
    PLoS One; 2016; 11(12):e0167200. PubMed ID: 28030558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization.
    Cursiefen C; Rummelt C; Küchle M
    Cornea; 2000 Jul; 19(4):526-33. PubMed ID: 10928772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin (IL)-17A Promotes Angiogenesis in an Experimental Corneal Neovascularization Model.
    Liu G; Wu H; Lu P; Zhang X
    Curr Eye Res; 2017 Mar; 42(3):368-379. PubMed ID: 27419340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.