These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 29160160)
1. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics. Perkins EL; Basu S; Garcia GJM; Buckmire RA; Shah RN; Kimbell JS Otolaryngol Head Neck Surg; 2018 Mar; 158(3):511-519. PubMed ID: 29160160 [TBL] [Abstract][Full Text] [Related]
2. Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis. Frank-Ito DO; Cohen SM Otolaryngol Head Neck Surg; 2021 Apr; 164(4):829-840. PubMed ID: 33045904 [TBL] [Abstract][Full Text] [Related]
3. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883 [TBL] [Abstract][Full Text] [Related]
4. Use of functional respiratory imaging to characterize the effect of inhalation profile and particle size on lung deposition of inhaled corticosteroid/long-acting β2-agonists delivered via a pressurized metered-dose inhaler. Van Holsbeke C; De Backer J; Vos W; Marshall J Ther Adv Respir Dis; 2018; 12():1753466618760948. PubMed ID: 29499614 [TBL] [Abstract][Full Text] [Related]
5. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586 [TBL] [Abstract][Full Text] [Related]
6. Effects of vocal fold lesions on particle deposition in a mouth-throat model: A numerical study. Yu P; Xue C; Rosenthal J; Jiang JJ Auris Nasus Larynx; 2024 Feb; 51(1):120-124. PubMed ID: 37164816 [TBL] [Abstract][Full Text] [Related]
7. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes. Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients. Farzal Z; Basu S; Burke A; Fasanmade OO; Lopez EM; Bennett WD; Ebert CS; Zanation AM; Senior BA; Kimbell JS Int Forum Allergy Rhinol; 2019 Jul; 9(7):746-758. PubMed ID: 30821929 [TBL] [Abstract][Full Text] [Related]
10. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Kolanjiyil AV; Kleinstreuer C; Sadikot RT Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120 [TBL] [Abstract][Full Text] [Related]
11. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study. Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626 [TBL] [Abstract][Full Text] [Related]
12. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach. Milenkovic J; Alexopoulos AH; Kiparissides C Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048 [TBL] [Abstract][Full Text] [Related]
13. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
14. Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD). Das P; Nof E; Amirav I; Kassinos SC; Sznitman J PLoS One; 2018; 13(11):e0207711. PubMed ID: 30458054 [TBL] [Abstract][Full Text] [Related]
15. A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway. Gosman RE; Sicard RM; Cohen SM; Frank-Ito DO Exp Comput Multiph Flow; 2023; 5(3):235-246. PubMed ID: 37305073 [TBL] [Abstract][Full Text] [Related]
17. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model. Schroeter JD; Tewksbury EW; Wong BA; Kimbell JS J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):20-9. PubMed ID: 24580111 [TBL] [Abstract][Full Text] [Related]
18. Computational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages. Schroeter JD; Asgharian B; Price OT; McClellan GE Inhal Toxicol; 2013 Oct; 25(12):691-701. PubMed ID: 24102469 [TBL] [Abstract][Full Text] [Related]
19. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups. Keeler JA; Patki A; Woodard CR; Frank-Ito DO J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):153-66. PubMed ID: 26270330 [TBL] [Abstract][Full Text] [Related]
20. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study. Zhao J; Feng Y; Fromen CA Comput Biol Med; 2020 Jan; 116():103532. PubMed ID: 31751812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]