BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29160300)

  • 1. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients.
    Oetting WS; Wu B; Schladt DP; Guan W; Remmel RP; Mannon RB; Matas AJ; Israni AK; Jacobson PA
    Pharmacogenomics J; 2018 May; 18(3):501-505. PubMed ID: 29160300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles.
    Oetting WS; Schladt DP; Guan W; Miller MB; Remmel RP; Dorr C; Sanghavi K; Mannon RB; Herrera B; Matas AJ; Salomon DR; Kwok PY; Keating BJ; Israni AK; Jacobson PA;
    Am J Transplant; 2016 Feb; 16(2):574-82. PubMed ID: 26485092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients.
    Seibert SR; Schladt DP; Wu B; Guan W; Dorr C; Remmel RP; Matas AJ; Mannon RB; Israni AK; Oetting WS; Jacobson PA
    Clin Transplant; 2018 Dec; 32(12):e13424. PubMed ID: 30318646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.
    Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH
    Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of CYP3A4-392A/G, CYP3A5-6986A/G, and ABCB1-3435C/T Polymorphisms with Tacrolimus Dose, Serum Concentration, and Biochemical Parameters in Mexican Patients with Kidney Transplant.
    Alatorre-Moreno EV; Saldaña-Cruz AM; Pérez-Guerrero EE; Morán-Moguel MC; Contreras-Haro B; López-de La Mora DA; Dávalos-Rodríguez IP; Marín-Medina A; Rivera-Cameras A; Balderas-Peña LA; Gómez-Ramos JJ; Cortés-Sanabria L; Salazar-Páramo M
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the Genomic Architecture of the CYP3A Locus and ADME Genes for Personalized Tacrolimus Dosing.
    Yoon JG; Song SH; Choi S; Oh J; Jang IJ; Kim YJ; Moon S; Kim BJ; Cho Y; Kim HK; Min S; Ha J; Shin HS; Yang CW; Yoon HE; Yang J; Lee MG; Park JB; Kim MS;
    Transplantation; 2021 Oct; 105(10):2213-2225. PubMed ID: 33654003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines.
    Elens L; Capron A; van Schaik RH; De Meyer M; De Pauw L; Eddour DC; Latinne D; Wallemacq P; Mourad M; Haufroid V
    Ther Drug Monit; 2013 Oct; 35(5):608-16. PubMed ID: 24052064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients.
    Oetting WS; Wu B; Schladt DP; Guan W; Remmel RP; Dorr C; Mannon RB; Matas AJ; Israni AK; Jacobson PA
    Pharmacogenomics; 2018 Feb; 19(3):175-184. PubMed ID: 29318894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients.
    Lunde I; Bremer S; Midtvedt K; Mohebi B; Dahl M; Bergan S; Åsberg A; Christensen H
    Eur J Clin Pharmacol; 2014 Jun; 70(6):685-93. PubMed ID: 24658827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the CYP3A5 genotype on the distributions of dose-adjusted trough concentrations and incidence of rejection in Japanese renal transplant recipients receiving different tacrolimus formulations.
    Niioka T; Kagaya H; Saito M; Inoue T; Numakura K; Yamamoto R; Habuchi T; Satoh S; Miura M
    Clin Exp Nephrol; 2017 Oct; 21(5):787-796. PubMed ID: 28271256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis.
    Shi XJ; Geng F; Jiao Z; Cui XY; Qiu XY; Zhong MK
    J Clin Pharm Ther; 2011 Oct; 36(5):614-24. PubMed ID: 21916909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients.
    Trofe-Clark J; Brennan DC; West-Thielke P; Milone MC; Lim MA; Neubauer R; Nigro V; Bloom RD
    Am J Kidney Dis; 2018 Mar; 71(3):315-326. PubMed ID: 29162334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.
    Hu R; Barratt DT; Coller JK; Sallustio BC; Somogyi AA
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):320-326. PubMed ID: 29603629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients.
    Jing Y; Kong Y; Hou X; Liu H; Fu Q; Jiao Z; Peng H; Wei X
    J Clin Pharm Ther; 2021 Aug; 46(4):1117-1128. PubMed ID: 33768546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea.
    Jun KR; Lee W; Jang MS; Chun S; Song GW; Park KT; Lee SG; Han DJ; Kang C; Cho DY; Kim JQ; Min WK
    Transplantation; 2009 Apr; 87(8):1225-31. PubMed ID: 19384171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium.
    Jacobson PA; Oetting WS; Brearley AM; Leduc R; Guan W; Schladt D; Matas AJ; Lamba V; Julian BA; Mannon RB; Israni A;
    Transplantation; 2011 Feb; 91(3):300-8. PubMed ID: 21206424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation.
    Lloberas N; Elens L; Llaudó I; Padullés A; van Gelder T; Hesselink DA; Colom H; Andreu F; Torras J; Bestard O; Cruzado JM; Gil-Vernet S; van Schaik R; Grinyó JM
    Pharmacogenet Genomics; 2017 Sep; 27(9):313-322. PubMed ID: 28704257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase.
    Aouam K; Kolsi A; Kerkeni E; Ben Fredj N; Chaabane A; Monastiri K; Boughattas N
    Pharmacogenomics; 2015 Dec; 16(18):2045-54. PubMed ID: 26615671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.