These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29160558)

  • 1. Simpson's paradox in the integrated discrimination improvement.
    Chipman J; Braun D
    Stat Med; 2017 Dec; 36(28):4468-4481. PubMed ID: 29160558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination slope and integrated discrimination improvement - properties, relationships and impact of calibration.
    Pencina MJ; Fine JP; D'Agostino RB
    Stat Med; 2017 Dec; 36(28):4482-4490. PubMed ID: 27699818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a risk prediction model (Hangang) and comparison with clinical severity scores in burn patients.
    Kim Y; Kym D; Hur J; Jeon J; Yoon J; Yim H; Cho YS; Chun W
    PLoS One; 2019; 14(2):e0211075. PubMed ID: 30726241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effect of multiple genetic risk score models on colorectal cancer risk prediction.
    Xin J; Chu H; Ben S; Ge Y; Shao W; Zhao Y; Wei Y; Ma G; Li S; Gu D; Zhang Z; Du M; Wang M
    Gene; 2018 Oct; 673():174-180. PubMed ID: 29908285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.
    Demler OV; Pencina MJ; Cook NR; D'Agostino RB
    Stat Med; 2017 Sep; 36(21):3334-3360. PubMed ID: 28627112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index.
    Hilden J; Gerds TA
    Stat Med; 2014 Aug; 33(19):3405-14. PubMed ID: 23553436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of polygenic risk models using multiple performance measures: a critical assessment of discordant results.
    Martens FK; Tonk ECM; Janssens ACJW
    Genet Med; 2019 Feb; 21(2):391-397. PubMed ID: 29895851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the performance of prediction models: a framework for traditional and novel measures.
    Steyerberg EW; Vickers AJ; Cook NR; Gerds T; Gonen M; Obuchowski N; Pencina MJ; Kattan MW
    Epidemiology; 2010 Jan; 21(1):128-38. PubMed ID: 20010215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical risk reclassification at 10 years.
    Cook NR; Demler OV; Paynter NP
    Stat Med; 2017 Dec; 36(28):4498-4502. PubMed ID: 29156504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small improvement in the area under the receiver operating characteristic curve indicated small changes in predicted risks.
    Martens FK; Tonk EC; Kers JG; Janssens AC
    J Clin Epidemiol; 2016 Nov; 79():159-164. PubMed ID: 27430730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of covariate measurement error on risk prediction.
    Khudyakov P; Gorfine M; Zucker D; Spiegelman D
    Stat Med; 2015 Jul; 34(15):2353-67. PubMed ID: 25865315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families.
    Antoniou AC; Durocher F; Smith P; Simard J; Easton DF;
    Breast Cancer Res; 2006; 8(1):R3. PubMed ID: 16417652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The power-integrated discriminant improvement: An accurate measure of the incremental predictive value of additional biomarkers.
    Hayashi K; Eguchi S
    Stat Med; 2019 Jun; 38(14):2589-2604. PubMed ID: 30859601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the performance of models for predicting the BRCA germline mutations in Han Chinese familial breast cancer patients.
    Rao NY; Hu Z; Yu JM; Li WF; Zhang B; Su FX; Wu J; Shen ZZ; Huang W; Shao ZM
    Breast Cancer Res Treat; 2009 Aug; 116(3):563-70. PubMed ID: 18807178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring improvement in fracture risk prediction for a new risk factor: a simulation.
    Lix LM; Leslie WD; Majumdar SR
    BMC Res Notes; 2018 Jan; 11(1):62. PubMed ID: 29357907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measures for evaluation of prognostic improvement under multivariate normality for nested and nonnested models.
    Enserro DM; Demler OV; Pencina MJ; D'Agostino RB
    Stat Med; 2019 Sep; 38(20):3817-3831. PubMed ID: 31211443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting mortality after congenital heart surgeries: evaluation of the Aristotle and Risk Adjustement in Congenital Heart Surgery-1 risk prediction scoring systems: a retrospective single center analysis of 1150 patients.
    Joshi SS; Anthony G; Manasa D; Ashwini T; Jagadeesh AM; Borde DP; Bhat S; Manjunath CN
    Ann Card Anaesth; 2014; 17(4):266-70. PubMed ID: 25281620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New metrics for assessing diagnostic potential of candidate biomarkers.
    Pickering JW; Endre ZH
    Clin J Am Soc Nephrol; 2012 Aug; 7(8):1355-64. PubMed ID: 22679181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A discussion of calibration techniques for evaluating binary and categorical predictive models.
    Fenlon C; O'Grady L; Doherty ML; Dunnion J
    Prev Vet Med; 2018 Jan; 149():107-114. PubMed ID: 29290291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First things first: risk model performance metrics should reflect the clinical application.
    Kerr KF; Janes H
    Stat Med; 2017 Dec; 36(28):4503-4508. PubMed ID: 29156498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.