These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29160670)
1. Combining demographic and genetic factors to assess population vulnerability in stream species. Landguth EL; Muhlfeld CC; Waples RS; Jones L; Lowe WH; Whited D; Lucotch J; Neville H; Luikart G Ecol Appl; 2014; 24(6):1505-24. PubMed ID: 29160670 [TBL] [Abstract][Full Text] [Related]
2. Landscape resistance mediates native fish species distribution shifts and vulnerability to climate change in riverscapes. LeMoine MT; Eby LA; Clancy CG; Nyce LG; Jakober MJ; Isaak DJ Glob Chang Biol; 2020 Oct; 26(10):5492-5508. PubMed ID: 32677074 [TBL] [Abstract][Full Text] [Related]
3. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A. Ruesch AS; Torgersen CE; Lawler JJ; Olden JD; Peterson EE; Volk CJ; Lawrence DJ Conserv Biol; 2012 Oct; 26(5):873-82. PubMed ID: 22827880 [TBL] [Abstract][Full Text] [Related]
4. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Roberts JJ; Fausch KD; Peterson DP; Hooten MB Glob Chang Biol; 2013 May; 19(5):1383-98. PubMed ID: 23505098 [TBL] [Abstract][Full Text] [Related]
5. Landscape influences on genetic differentiation among bull trout populations in a stream-lake network. Meeuwig MH; Guy CS; Kalinowski ST; Fredenberg WA Mol Ecol; 2010 Sep; 19(17):3620-33. PubMed ID: 20723065 [TBL] [Abstract][Full Text] [Related]
6. A novel quantitative framework for riverscape genetics. White SL; Hanks EM; Wagner T Ecol Appl; 2020 Oct; 30(7):e02147. PubMed ID: 32338800 [TBL] [Abstract][Full Text] [Related]
7. Accounting for adaptive capacity and uncertainty in assessments of species' climate-change vulnerability. Wade AA; Hand BK; Kovach RP; Luikart G; Whited DC; Muhlfeld CC Conserv Biol; 2017 Feb; 31(1):136-149. PubMed ID: 27214122 [TBL] [Abstract][Full Text] [Related]
8. Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Inoue K; Berg DJ Glob Chang Biol; 2017 Jan; 23(1):94-107. PubMed ID: 27225328 [TBL] [Abstract][Full Text] [Related]
9. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Kanno Y; Vokoun JC; Letcher BH Mol Ecol; 2011 Sep; 20(18):3711-29. PubMed ID: 21819470 [TBL] [Abstract][Full Text] [Related]
10. Hiding in Plain Sight: A Case for Cryptic Metapopulations in Brook Trout (Salvelinus fontinalis). Kazyak DC; Hilderbrand RH; King TL; Keller SR; Chhatre VE PLoS One; 2016; 11(1):e0146295. PubMed ID: 26730588 [TBL] [Abstract][Full Text] [Related]
11. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change. Penaluna BE; Dunham JB; Railsback SF; Arismendi I; Johnson SL; Bilby RE; Safeeq M; Skaugset AE PLoS One; 2015; 10(8):e0135334. PubMed ID: 26295478 [TBL] [Abstract][Full Text] [Related]
12. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout. Kovach RP; Muhlfeld CC; Wade AA; Hand BK; Whited DC; DeHaan PW; Al-Chokhachy R; Luikart G Glob Chang Biol; 2015 Jul; 21(7):2510-2524. PubMed ID: 25656972 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection. DeWeber JT; Wagner T Glob Chang Biol; 2018 Jun; 24(6):2735-2748. PubMed ID: 29468779 [TBL] [Abstract][Full Text] [Related]
14. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related? Peacock MM; Gustin MS; Kirchoff VS; Robinson ML; Hekkala E; Pizzarro-Barraza C; Loux T Sci Total Environ; 2016 Sep; 563-564():221-36. PubMed ID: 27135585 [TBL] [Abstract][Full Text] [Related]
15. Can brook trout survive climate change in large rivers? If it rains. Merriam ER; Fernandez R; Petty JT; Zegre N Sci Total Environ; 2017 Dec; 607-608():1225-1236. PubMed ID: 28732401 [TBL] [Abstract][Full Text] [Related]
16. Vulnerability of European freshwater catchments to climate change. Markovic D; Carrizo SF; Kärcher O; Walz A; David JNW Glob Chang Biol; 2017 Sep; 23(9):3567-3580. PubMed ID: 28186382 [TBL] [Abstract][Full Text] [Related]
17. Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress. FitzGerald AM; John SN; Apgar TM; Mantua NJ; Martin BT Glob Chang Biol; 2021 Feb; 27(3):536-549. PubMed ID: 33216441 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production. Ayllón D; Railsback SF; Harvey BC; García Quirós I; Nicola GG; Elvira B; Almodóvar A Sci Total Environ; 2019 Nov; 693():133648. PubMed ID: 31634990 [TBL] [Abstract][Full Text] [Related]
19. Robust estimates of environmental effects on population vital rates: an integrated capture-recapture model of seasonal brook trout growth, survival and movement in a stream network. Letcher BH; Schueller P; Bassar RD; Nislow KH; Coombs JA; Sakrejda K; Morrissey M; Sigourney DB; Whiteley AR; O'Donnell MJ; Dubreuil TL J Anim Ecol; 2015 Mar; 84(2):337-52. PubMed ID: 25327608 [TBL] [Abstract][Full Text] [Related]
20. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Isaak DJ; Luce CH; Rieman BE; Nagel DE; Peterson EE; Horan DL; Parkes S; Chandler GL Ecol Appl; 2010 Jul; 20(5):1350-71. PubMed ID: 20666254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]