BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 29160796)

  • 21. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular signaling in bone cells: Regulation of cell differentiation and survival.
    Plotkin LI; Bruzzaniti A
    Adv Protein Chem Struct Biol; 2019; 116():237-281. PubMed ID: 31036293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular localization of galectin-3 has a deleterious role in joint tissues.
    Janelle-Montcalm A; Boileau C; Poirier F; Pelletier JP; Guévremont M; Duval N; Martel-Pelletier J; Reboul P
    Arthritis Res Ther; 2007; 9(1):R20. PubMed ID: 17326835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular communications in bone homeostasis and repair.
    Nakahama K
    Cell Mol Life Sci; 2010 Dec; 67(23):4001-9. PubMed ID: 20694737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review).
    Valenti MT; Dalle Carbonare L; Mottes M
    Int J Mol Med; 2018 May; 41(5):2441-2449. PubMed ID: 29393379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice.
    Marulanda J; Gao C; Roman H; Henderson JE; Murshed M
    Bone; 2013 Dec; 57(2):499-508. PubMed ID: 23994172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone.
    Wang Y; Zhu J; DeLuca HF
    J Bone Miner Res; 2014 Mar; 29(3):685-92. PubMed ID: 24038189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes.
    Marcellini S; Henriquez JP; Bertin A
    Bioessays; 2012 Nov; 34(11):953-62. PubMed ID: 22930599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of galectin-3 in skeletal tissues is controlled by Runx2.
    Stock M; Schäfer H; Stricker S; Gross G; Mundlos S; Otto F
    J Biol Chem; 2003 May; 278(19):17360-7. PubMed ID: 12604608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system.
    Niedźwiedzki T; Filipowska J
    J Mol Endocrinol; 2015 Oct; 55(2):R23-36. PubMed ID: 26307562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Galectin-1 and galectin-3 expression in equine mesenchymal stromal cells (MSCs), synovial fibroblasts and chondrocytes, and the effect of inflammation on MSC motility.
    Reesink HL; Sutton RM; Shurer CR; Peterson RP; Tan JS; Su J; Paszek MJ; Nixon AJ
    Stem Cell Res Ther; 2017 Nov; 8(1):243. PubMed ID: 29096716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of osteochondroprogenitor fate determination during bone formation.
    Zou L; Zou X; Li H; Mygind T; Zeng Y; Lü N; Bünger C
    Adv Exp Med Biol; 2006; 585():431-41. PubMed ID: 17120800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation.
    Ortega N; Behonick DJ; Colnot C; Cooper DN; Werb Z
    Mol Biol Cell; 2005 Jun; 16(6):3028-39. PubMed ID: 15800063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human cartilage glycoprotein 39 (HC gp-39) mRNA expression in adult and fetal chondrocytes, osteoblasts and osteocytes by in-situ hybridization.
    Connor JR; Dodds RA; Emery JG; Kirkpatrick RB; Rosenberg M; Gowen M
    Osteoarthritis Cartilage; 2000 Mar; 8(2):87-95. PubMed ID: 10772238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boning up on ephrin signaling.
    Mundy GR; Elefteriou F
    Cell; 2006 Aug; 126(3):441-3. PubMed ID: 16901775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct VEGF functions during bone development and homeostasis.
    Liu Y; Olsen BR
    Arch Immunol Ther Exp (Warsz); 2014 Oct; 62(5):363-8. PubMed ID: 24699630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular and molecular mechanisms of bone remodeling.
    Raggatt LJ; Partridge NC
    J Biol Chem; 2010 Aug; 285(33):25103-8. PubMed ID: 20501658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts.
    Heino TJ; Hentunen TA; Väänänen HK
    Exp Cell Res; 2004 Apr; 294(2):458-68. PubMed ID: 15023534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autophagy plays an essential role in bone homeostasis.
    Jaber FA; Khan NM; Ansari MY; Al-Adlaan AA; Hussein NJ; Safadi FF
    J Cell Physiol; 2019 Aug; 234(8):12105-12115. PubMed ID: 30820954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair.
    Lavoie JF; Biernaskie JA; Chen Y; Bagli D; Alman B; Kaplan DR; Miller FD
    Stem Cells Dev; 2009; 18(6):893-906. PubMed ID: 18834279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.