BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29160798)

  • 21. Surface-enhanced Raman spectroscopy (SERS): progress and trends.
    Cialla D; März A; Böhme R; Theil F; Weber K; Schmitt M; Popp J
    Anal Bioanal Chem; 2012 Apr; 403(1):27-54. PubMed ID: 22205182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclodextrin-assisted surface-enhanced Raman spectroscopy: a critical review.
    Markina NE; Cialla-May D; Markin AV
    Anal Bioanal Chem; 2022 Jan; 414(2):923-942. PubMed ID: 34635933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reading microdots of a molecularly imprinted polymer by surface-enhanced Raman spectroscopy.
    Kantarovich K; Tsarfati I; Gheber LA; Haupt K; Bar I
    Biosens Bioelectron; 2010 Oct; 26(2):809-14. PubMed ID: 20621465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor.
    Feng S; Gao F; Chen Z; Grant E; Kitts DD; Wang S; Lu X
    J Agric Food Chem; 2013 Nov; 61(44):10467-75. PubMed ID: 24099154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancements in mercury detection using surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs): a review.
    Tukur F; Tukur P; Hunyadi Murph SE; Wei J
    Nanoscale; 2024 Jun; 16(24):11384-11410. PubMed ID: 38868998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.
    Draz MS; Lu X
    Theranostics; 2016; 6(4):522-32. PubMed ID: 26941845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling.
    Yang L; Fu C; Wang H; Xu S; Xu W
    Anal Bioanal Chem; 2017 Jan; 409(1):235-242. PubMed ID: 27796455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy.
    Zhang Z; Zhao C; Ma Y; Li G
    Analyst; 2014 Jul; 139(14):3614-21. PubMed ID: 24875278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand Replacement Approach to Raman-Responded Molecularly Imprinted Monolayer for Rapid Determination of Penicilloic Acid in Penicillin.
    Zhang L; Jin Y; Huang X; Zhou Y; Du S; Zhang Z
    Anal Chem; 2015 Dec; 87(23):11763-70. PubMed ID: 26545037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers.
    Lv Y; Qin Y; Svec F; Tan T
    Biosens Bioelectron; 2016 Jun; 80():433-441. PubMed ID: 26874111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides.
    Pang S; Labuza TP; He L
    Analyst; 2014 Apr; 139(8):1895-901. PubMed ID: 24551875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.
    Zheng Y; Chen Z; Zheng C; Lee YI; Hou X; Wu L; Tian Y
    Talanta; 2016 Aug; 155():87-93. PubMed ID: 27216660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions.
    Sun F; Ella-Menye JR; Galvan DD; Bai T; Hung HC; Chou YN; Zhang P; Jiang S; Yu Q
    ACS Nano; 2015 Mar; 9(3):2668-76. PubMed ID: 25738888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications.
    Guerrini L; Graham D
    Chem Soc Rev; 2012 Nov; 41(21):7085-107. PubMed ID: 22833008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of DNA adducts using surface-enhanced Raman spectroscopy.
    Helmenstine A; Uziel M; Vo-Dinh T
    J Toxicol Environ Health; 1993; 40(2-3):195-202. PubMed ID: 8230295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection.
    Fu C; Wang Y; Chen G; Yang L; Xu S; Xu W
    Anal Chem; 2015 Oct; 87(19):9555-8. PubMed ID: 26339871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review.
    Xu ML; Gao Y; Han XX; Zhao B
    J Agric Food Chem; 2017 Aug; 65(32):6719-6726. PubMed ID: 28726388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.