These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29160799)

  • 1. [-25]A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks.
    García-Hernández A; Galván-Tejada CE; Galván-Tejada JI; Celaya-Padilla JM; Gamboa-Rosales H; Velasco-Elizondo P; Cárdenas-Vargas R
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29160799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.
    Takashima R; Takiguchi T; Ariki Y
    J Acoust Soc Am; 2013 Feb; 133(2):891-901. PubMed ID: 23363107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Methods for Underwater Target Feature Extraction and Recognition.
    Hu G; Wang K; Peng Y; Qiu M; Shi J; Liu L
    Comput Intell Neurosci; 2018; 2018():1214301. PubMed ID: 29780407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound texture recognition through dynamical systems modeling of empirical mode decomposition.
    Van Nort D; Braasch J; Oliveros P
    J Acoust Soc Am; 2012 Oct; 132(4):2734-44. PubMed ID: 23039465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Incremental Class-Learning Approach with Acoustic Novelty Detection for Acoustic Event Recognition.
    Bayram B; İnce G
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer Learning for Improved Audio-Based Human Activity Recognition.
    Ntalampiras S; Potamitis I
    Biosensors (Basel); 2018 Jun; 8(3):. PubMed ID: 29941845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Timbre Toolbox: extracting audio descriptors from musical signals.
    Peeters G; Giordano BL; Susini P; Misdariis N; McAdams S
    J Acoust Soc Am; 2011 Nov; 130(5):2902-16. PubMed ID: 22087919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic- and Radio-Frequency-Based Human Activity Recognition.
    Mohtadifar M; Cheffena M; Pourafzal A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes.
    Bahoura M
    Comput Biol Med; 2009 Sep; 39(9):824-43. PubMed ID: 19631934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound Analysis.
    Allwood G; Du X; Webberley KM; Osseiran A; Marshall BJ
    IEEE Rev Biomed Eng; 2019; 12():240-253. PubMed ID: 30307875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of Activities of Daily Living Based on Environmental Analyses Using Audio Fingerprinting Techniques: A Systematic Review.
    Pires IM; Santos R; Pombo N; Garcia NM; Flórez-Revuelta F; Spinsante S; Goleva R; Zdravevski E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29315232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise.
    Abeysinghe A; Fard M; Jazar R; Zambetta F; Davy J
    J Acoust Soc Am; 2021 Jul; 150(1):193. PubMed ID: 34340510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustics of snoring and automatic snore sound detection in children.
    Çavuşoğlu M; Poets CF; Urschitz MS
    Physiol Meas; 2017 Oct; 38(11):1919-1938. PubMed ID: 28871074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochleagram-based audio pattern separation using two-dimensional non-negative matrix factorization with automatic sparsity adaptation.
    Gao B; Woo WL; Khor LC
    J Acoust Soc Am; 2014 Mar; 135(3):1171-85. PubMed ID: 24606260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].
    Yan WY; Li L; Yang YG; Lin XL; Wu JZ
    Zhonghua Er Ke Za Zhi; 2016 Aug; 54(8):605-9. PubMed ID: 27510874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROTAX-Sound: A probabilistic framework for automated animal sound identification.
    de Camargo UM; Somervuo P; Ovaskainen O
    PLoS One; 2017; 12(9):e0184048. PubMed ID: 28863178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method for Sensor-Based Activity Recognition in Missing Data Scenario.
    Hossain T; Ahad MAR; Inoue S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.