These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29160830)

  • 21. Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo.
    Bacchi L; Biagini F; Corsinovi S; Romanelli M; Villa M; Valentini R
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32252282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemically induced annealing of stainless-steel surfaces.
    Burstein GT; Hutchings IM; Sasaki K
    Nature; 2000 Oct; 407(6806):885-7. PubMed ID: 11057662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel.
    Lei Y; Xu J; Wang Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of Deposited Dust on SCC and Crevice Corrosion of AISI 304L Stainless Steel in Saline Environment.
    Yeh CP; Tsai KC; Huang JY
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load.
    Röhsler A; Sobol O; Hänninen H; Böllinghaus T
    Sci Rep; 2020 Feb; 10(1):3611. PubMed ID: 32107420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel.
    Harwarth M; Brauer A; Huang Q; Pourabdoli M; Mola J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures.
    Khedr M; Hamada A; Abd-Elaziem W; Jaskari M; Elsamanty M; Kömi J; Järvenpää A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation of specific wear rates of AISI 304 austenitic and AISI 2205 duplex stainless steels at room and high temperatures.
    Ahmed DA; Mulapeer MM
    Heliyon; 2022 Nov; 8(11):e11807. PubMed ID: 36451760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel.
    Pei W; Yang S; Cao K; Zhao A
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Shear Strain Rate on Microstructure and Properties of Austenitic Steel Processed by Cyclic Forward/Reverse Torsion.
    Zhang Z; Dong Q; Song B; He H; Chai L; Guo N; Wang B; Yao Z
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30736410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.
    Kang SH; Kim TK; Jang J; Oh KH
    Microsc Microanal; 2015 Jun; 21(3):582-7. PubMed ID: 26149344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Chloride Concentration on Stress Corrosion Cracking and Crevice Corrosion of Austenitic Stainless Steel in Saline Environments.
    Yeh CP; Tsai KC; Huang JY
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive Behavior and Constitutive Model of Austenitic Stainless Steel S30403 in High Strain Range.
    Peng Y; Chu J; Dong J
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An In-Situ Electrochemical Nanoindentation (ECNI) Study on the Effect of Hydrogen on the Mechanical Properties of 316L Austenitic Stainless Steel.
    Basa A; Wang D; Espallargas N; Wan D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Temperature Tensile Fracture Behavior of Copper-Containing Austenitic Antibacterial Stainless Steel.
    Qian J; Wang H; Li J; Xu R
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel.
    Jambor M; Vojtek T; Pokorný P; Šmíd M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.
    Krawczynska AT; Lewandowska M; Pippan R; Kurzydlowski KJ
    J Nanosci Nanotechnol; 2013 May; 13(5):3246-9. PubMed ID: 23858838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.