These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29160830)

  • 41. Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance.
    He Q; Wei W; Wang MS; Guo FJ; Zhai Y; Wang YF; Huang CX
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Initial Predeformation on the Plastic Properties of Rolled Sheets of AISI 304L Austenitic Steel.
    Szusta J; Zubelewicz A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel.
    Dong H; Li ZC; Somani MC; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase Transformation in 316L Austenitic Steel Induced by Fracture at Cryogenic Temperatures: Experiment and Modelling.
    Nalepka K; Skoczeń B; Ciepielowska M; Schmidt R; Tabin J; Schmidt E; Zwolińska-Faryj W; Chulist R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Diamond Burnishing on Fatigue Behaviour of AISI 304 Chromium-Nickel Austenitic Stainless Steel.
    Maximov J; Duncheva G; Anchev A; Dunchev V; Argirov Y
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microstructural Characterization and Mechanical Properties of L-PBF Processed 316 L at Cryogenic Temperature.
    Mishra P; Åkerfeldt P; Forouzan F; Svahn F; Zhong Y; Shen ZJ; Antti ML
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening.
    Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K
    Scanning; 2017; 2017():2189614. PubMed ID: 29379582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the constitutive model of nitrogen-containing austenitic stainless steel 316LN at elevated temperature.
    Zhang L; Feng X; Wang X; Liu C
    PLoS One; 2014; 9(11):e102687. PubMed ID: 25375345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners.
    Brahimi SV; Yue S; Sriraman KR
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel.
    Zhang Y; Hui W; Zhao X; Wang C; Dong H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Intergranular Corrosion Susceptibility of Metastable Austenitic Cr⁻Mn⁻Ni⁻N⁻Cu High-Strength Stainless Steel under Various Heat Treatments.
    Liu G; Liu Y; Cheng Y; Li J; Jiang Y
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a cold-rolled 2101 lean duplex stainless steel.
    Bassani P; Breda M; Brunelli K; Mészáros I; Passaretti F; Zanellato M; Calliari I
    Microsc Microanal; 2013 Aug; 19(4):988-95. PubMed ID: 23721654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting.
    Kwon YJ; Casati R; Coduri M; Vedani M; Lee CS
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nickel release from stainless steels.
    Haudrechy P; Mantout B; Frappaz A; Rousseau D; Chabeau G; Faure M; Claudy A
    Contact Dermatitis; 1997 Sep; 37(3):113-7. PubMed ID: 9330816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microstructure, Mechanical, and Corrosion Properties of Ni-Free Austenitic Stainless Steel Prepared by Mechanical Alloying and HIPping.
    Romanczuk E; Perkowski K; Oksiuta Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental Study of the Post-Fire Mechanical and Material Response of Cold-Worked Austenitic Stainless Steel Reinforcing Bar.
    Rehman FU; Cashell KA; Anguilano L
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels.
    Griffiths M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.