BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29160871)

  • 1. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces.
    de Oliveira IP; Jara GE; Martínez L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31499-31507. PubMed ID: 29160871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Lipase-Electrospun SiO
    Kuang L; Zhang Q; Li J; Tian H
    J Agric Food Chem; 2020 Aug; 68(31):8362-8369. PubMed ID: 32649192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.
    Liu Y; Chen D; Yan Y; Peng C; Xu L
    Bioresour Technol; 2011 Nov; 102(22):10414-8. PubMed ID: 21955878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetically useful variants of industrial lipases from Burkholderia cepacia and Pseudomonas fluorescens.
    Yoshida K; Ono M; Yamamoto T; Utsumi T; Koikeda S; Ema T
    Org Biomol Chem; 2017 Oct; 15(41):8713-8719. PubMed ID: 28956057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers.
    Song J; Kahveci D; Chen M; Guo Z; Xie E; Xu X; Besenbacher F; Dong M
    Langmuir; 2012 Apr; 28(14):6157-62. PubMed ID: 22397625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.
    Badgujar KC; Bhanage BM
    J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis of Aqueous-like Activity of Lipase Treated with Glucose-Headed Surfactant in Organic Solvent.
    Lee HS; Oh Y; Kim MJ; Im W
    J Phys Chem B; 2018 Nov; 122(47):10659-10668. PubMed ID: 30398874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation.
    Mathpati AC; Vyas VK; Bhanage BM
    J Biotechnol; 2017 Nov; 262():1-10. PubMed ID: 28958793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of essential dynamics of Pseudomonas cepacia lipase.
    Lee J; Suh SW; Shin S
    J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica.
    Jin Q; Jia G; Zhang Y; Yang Q; Li C
    Langmuir; 2011 Oct; 27(19):12016-24. PubMed ID: 21851086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Conformational Transitions and Dynamics of
    Liang K; Dong W; Gao J; Liu Z; Zhou R; Shu Z; Duan M
    J Chem Inf Model; 2023 Jun; 63(12):3854-3864. PubMed ID: 37307245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment.
    Liu J; Bai S; Jin Q; Zhong H; Li C; Yang Q
    Langmuir; 2012 Jun; 28(25):9788-96. PubMed ID: 22642540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment.
    Cheng C; Jiang T; Wu Y; Cui L; Qin S; He B
    Int J Biol Macromol; 2018 Nov; 119():1211-1217. PubMed ID: 30071229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K; Seelan S
    J Biosci Bioeng; 2010 Jun; 109(6):615-7. PubMed ID: 20471602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.