These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 29160893)
21. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Mircescu NE; Zhou H; Leopold N; Chiş V; Ivleva NP; Niessner R; Wieser A; Haisch C Anal Bioanal Chem; 2014 May; 406(13):3051-8. PubMed ID: 24705957 [TBL] [Abstract][Full Text] [Related]
22. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499 [TBL] [Abstract][Full Text] [Related]
23. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS). Li X; Martin SJH; Chinoy ZS; Liu L; Rittgers B; Dluhy RA; Boons GJ Chemistry; 2016 Aug; 22(32):11180-11185. PubMed ID: 27304194 [TBL] [Abstract][Full Text] [Related]
24. Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis. Guicheteau J; Argue L; Emge D; Hyre A; Jacobson M; Christesen S Appl Spectrosc; 2008 Mar; 62(3):267-72. PubMed ID: 18339232 [TBL] [Abstract][Full Text] [Related]
25. A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Liao W; Lin Q; Xie S; He Y; Tian Y; Duan Y Anal Chim Acta; 2018 Dec; 1043():64-71. PubMed ID: 30392670 [TBL] [Abstract][Full Text] [Related]
26. Detecting Esophageal Cancer Using Surface-Enhanced Raman Spectroscopy (SERS) of Serum Coupled with Hierarchical Cluster Analysis and Principal Component Analysis. Li X; Yang T; Li S; Wang D; Guan D Appl Spectrosc; 2015 Nov; 69(11):1334-41. PubMed ID: 26647057 [TBL] [Abstract][Full Text] [Related]
27. [Real-time microbiological diagnostics of the human integument in space flight using the method of chromatography-mass spectrometry detection]. Gegenava AV Aviakosm Ekolog Med; 2011; 45(3):12-7. PubMed ID: 21916245 [TBL] [Abstract][Full Text] [Related]
28. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Naja G; Bouvrette P; Hrapovic S; Luong JH Analyst; 2007 Jul; 132(7):679-86. PubMed ID: 17592587 [TBL] [Abstract][Full Text] [Related]
29. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture. Corrigan DK; Cauchi M; Piletsky S; Mccrossen S PDA J Pharm Sci Technol; 2009; 63(6):568-74. PubMed ID: 20169863 [TBL] [Abstract][Full Text] [Related]
30. Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Weiss R; Palatinszky M; Wagner M; Niessner R; Elsner M; Seidel M; Ivleva NP Analyst; 2019 Jan; 144(3):943-953. PubMed ID: 30574650 [TBL] [Abstract][Full Text] [Related]
31. Influence of protein size on surface-enhanced Raman scattering (SERS) spectra in binary protein mixtures. Avci E; Culha M Appl Spectrosc; 2014; 68(8):890-9. PubMed ID: 25061790 [TBL] [Abstract][Full Text] [Related]
32. Discrimination of urinary tract infection pathogens by means of their growth profiles using surface enhanced Raman scattering. Avci E; Kaya NS; Ucankus G; Culha M Anal Bioanal Chem; 2015 Nov; 407(27):8233-41. PubMed ID: 26297460 [TBL] [Abstract][Full Text] [Related]
34. Preparation of Au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. Liao W; Lin Q; Xu Y; Yang E; Duan Y Nanoscale; 2019 Mar; 11(12):5346-5354. PubMed ID: 30848272 [TBL] [Abstract][Full Text] [Related]
35. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. Lin D; Qin T; Wang Y; Sun X; Chen L ACS Appl Mater Interfaces; 2014 Jan; 6(2):1320-9. PubMed ID: 24380413 [TBL] [Abstract][Full Text] [Related]
36. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies. Anantharaj S; Sakthikumar K; Elangovan A; Ravi G; Karthik T; Kundu S J Colloid Interface Sci; 2016 Dec; 483():360-373. PubMed ID: 27571687 [TBL] [Abstract][Full Text] [Related]
37. A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites. Ramírez-Guízar S; Sykes H; Perry JD; Schwalbe EC; Stanforth SP; Perez-Perez MCI; Dean JR J Chromatogr A; 2017 Jun; 1501():79-88. PubMed ID: 28438317 [TBL] [Abstract][Full Text] [Related]
38. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Langer J; García I; Liz-Marzán LM Faraday Discuss; 2017 Dec; 205():363-375. PubMed ID: 28880321 [TBL] [Abstract][Full Text] [Related]
39. Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine. Weng S; Dong R; Zhu Z; Zhang D; Zhao J; Huang L; Liang D Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():1-7. PubMed ID: 28783586 [TBL] [Abstract][Full Text] [Related]
40. Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry. Witkowska E; Korsak D; Kowalska A; Księżopolska-Gocalska M; Niedziółka-Jönsson J; Roźniecka E; Michałowicz W; Albrycht P; Podrażka M; Hołyst R; Waluk J; Kamińska A Anal Bioanal Chem; 2017 Feb; 409(6):1555-1567. PubMed ID: 28004171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]