These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29161020)

  • 1. Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness.
    Ye D; Cheng Q; Zhang Q; Wang Y; Chang C; Li L; Peng H; Zhang L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43154-43162. PubMed ID: 29161020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong and Tough Cellulose Hydrogels via Solution Annealing and Dual Cross-Linking.
    Wei P; Yu X; Fang Y; Wang L; Zhang H; Zhu C; Cai J
    Small; 2023 Jul; 19(28):e2301204. PubMed ID: 36967542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers.
    Sun D; Gao Y; Zhou Y; Yang M; Hu J; Lu T; Wang T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49389-49397. PubMed ID: 36273343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers.
    Ye D; Chang C; Zhang L
    Biomacromolecules; 2019 May; 20(5):1989-1995. PubMed ID: 30908016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films.
    Ye D; Lei X; Li T; Cheng Q; Chang C; Hu L; Zhang L
    ACS Nano; 2019 Apr; 13(4):4843-4853. PubMed ID: 30943014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics.
    Yang J; Xu F; Han CR
    Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation.
    Zhong L; Dong Z; Liu Y; Chen C; Xu Z
    Int J Biol Macromol; 2023 Jan; 225():79-89. PubMed ID: 36460246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds.
    Shao C; Chang H; Wang M; Xu F; Yang J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28305-28318. PubMed ID: 28771308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping hierarchical networks of poly(vinyl alcohol)/cellulose nanofiber composite hydrogels via viscoelastic probes.
    Zhang W; Wang Y; Wu D
    Carbohydr Polym; 2022 Jul; 288():119372. PubMed ID: 35450634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance.
    Yang J; Xu F
    Biomacromolecules; 2017 Aug; 18(8):2623-2632. PubMed ID: 28686432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability.
    Zhang T; Zuo T; Hu D; Chang C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers.
    Guan QF; Han ZM; Zhu Y; Xu WL; Yang HB; Ling ZC; Yan BB; Yang KP; Yin CH; Wu H; Yu SH
    Nano Lett; 2021 Jan; 21(2):952-958. PubMed ID: 33401909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.
    Li N; Chen W; Chen G; Tian J
    Carbohydr Polym; 2017 Sep; 171():77-84. PubMed ID: 28578973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing stiffness of nanofibres in bacterial cellulose hydrogels: Numerical-experimental framework.
    Gao X; Sozumert E; Shi Z; Yang G; Silberschmidt VV
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():9-18. PubMed ID: 28532108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel.
    Zhou J; Du X; Gao Y; Shi J; Xu B
    J Am Chem Soc; 2014 Feb; 136(8):2970-3. PubMed ID: 24512553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties.
    Niu J; Wang J; Dai X; Shao Z; Huang X
    Carbohydr Polym; 2018 Aug; 193():73-81. PubMed ID: 29773399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient and Environmentally Friendly Fabrication of Robust, Programmable, and Biocompatible Anisotropic, All-Cellulose, Wrinkle-Patterned Hydrogels for Cell Alignment.
    Zou J; Wu S; Chen J; Lei X; Li Q; Yu H; Tang S; Ye D
    Adv Mater; 2019 Nov; 31(46):e1904762. PubMed ID: 31566289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior.
    Zhang M; Chen S; Sheng N; Wang B; Wu Z; Liang Q; Wang H
    Nanoscale; 2021 May; 13(17):8126-8136. PubMed ID: 33881113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-Induced Cellulose Nanofibers/Poly(vinyl alcohol) Hydrogels Regulated by Hydrogen Bonding for In Situ Water Shutoff.
    Chen H; Wei P; Qi Y; Xie Y; Huang X
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39883-39895. PubMed ID: 37578297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Behaviors-Assisted Fabrication of Multidimensional Birefringent Materials from Dynamic Hybrid Hydrogels.
    Huang H; Wang X; Yu J; Chen Y; Ji H; Zhang Y; Rehfeldt F; Wang Y; Zhang K
    ACS Nano; 2019 Apr; 13(4):3867-3874. PubMed ID: 30811180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.