These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29161048)

  • 1. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.
    Li Q; Zhu H; Zheng L; Fan L; Wang N; Rong Y; Ren Y; Chen J; Deng J; Xing X
    Nano Lett; 2017 Dec; 17(12):7892-7896. PubMed ID: 29161048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Chemical Strain in PtFe Alloy Nanoparticles.
    Li Q; Zhu H; Zheng L; Liu H; Ren Y; Wang N; Chen J; Deng J; Xing X
    Inorg Chem; 2018 Sep; 57(17):10494-10497. PubMed ID: 30132659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction.
    Kumeda T; Otsuka N; Tajiri H; Sakata O; Hoshi N; Nakamura M
    ACS Omega; 2017 May; 2(5):1858-1863. PubMed ID: 31457547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.
    Cheng D; Yuan S; Ferrando R
    J Phys Condens Matter; 2013 Sep; 25(35):355008. PubMed ID: 23913101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes.
    Wang S; Xiong L; Bi J; Zhang X; Yang G; Yang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27009-27018. PubMed ID: 30040371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles.
    Ahmadi M; Cui C; Mistry H; Strasser P; Cuenya BR
    ACS Nano; 2015 Nov; 9(11):10686-94. PubMed ID: 26418831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the formation of PtNi nanoalloys supported on hollow graphitic spheres using in situ pair distribution function analysis.
    Ortatatlı Ş; Knossalla J; Schüth F; Weidenthaler C
    Phys Chem Chem Phys; 2018 Mar; 20(13):8466-8474. PubMed ID: 29349476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS.
    Harada M; Ikegami R; Kumara LSR; Kohara S; Sakata O
    RSC Adv; 2019 Sep; 9(51):29511-29521. PubMed ID: 35531547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation.
    Zhou YY; Liu CH; Liu J; Cai XL; Lu Y; Zhang H; Sun XH; Wang SD
    Nanomicro Lett; 2016; 8(4):371-380. PubMed ID: 30460295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-Scale Snapshots of the Formation and Growth of Hollow PtNi/C Nanocatalysts.
    Chattot R; Asset T; Drnec J; Bordet P; Nelayah J; Dubau L; Maillard F
    Nano Lett; 2017 Apr; 17(4):2447-2453. PubMed ID: 28340297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative Thermal Expansion in Nanosolids.
    Li Q; Zhu H; Hu L; Chen J; Xing X
    Acc Chem Res; 2019 Sep; 52(9):2694-2702. PubMed ID: 31393697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Pt NiNC-Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts-In Situ Tracking of the Atomic Alloying Process.
    Feng Q; Wang X; Klingenhof M; Heggen M; Strasser P
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202203728. PubMed ID: 35802306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical order-disorder nanodomains in Fe
    Li Q; Ren Y; Zhang Q; Gu L; Huang Q; Wu H; Sun J; Cao Y; Lin K; Xing X
    Natl Sci Rev; 2022 Dec; 9(12):nwac053. PubMed ID: 36778106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.
    Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V
    Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles.
    Wang R; Liang X; Liu H; Cui L; Zhang X; Liu C
    Mikrochim Acta; 2018 Jun; 185(7):339. PubMed ID: 29946746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen storage and stability properties of Pd-Pt solid-solution nanoparticles revealed via atomic and electronic structure.
    Kumara LSR; Sakata O; Kobayashi H; Song C; Kohara S; Ina T; Yoshimoto T; Yoshioka S; Matsumura S; Kitagawa H
    Sci Rep; 2017 Nov; 7(1):14606. PubMed ID: 29097810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.