BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29161638)

  • 21. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.
    Paul A; Mishra S
    J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase.
    Purg M; Pabis A; Baier F; Tokuriki N; Jackson C; Kamerlin SC
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase.
    Miller AF
    Acc Chem Res; 2008 Apr; 41(4):501-10. PubMed ID: 18376853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M
    Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies.
    Meng EC; Babbitt PC
    Curr Opin Struct Biol; 2011 Jun; 21(3):391-7. PubMed ID: 21458983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
    Baier F; Tokuriki N
    J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution.
    Paul A; Mishra S
    Comput Biol Chem; 2023 Apr; 103():107832. PubMed ID: 36805170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic mechanisms of metallohydrolases containing two metal ions.
    Mitić N; Miraula M; Selleck C; Hadler KS; Uribe E; Pedroso MM; Schenk G
    Adv Protein Chem Struct Biol; 2014; 97():49-81. PubMed ID: 25458355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition.
    Xue L; He H; Liu C; Zhang C; Zhang B
    Environ Sci Technol; 2009 Feb; 43(3):890-5. PubMed ID: 19245032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-catalyzed oxidations of C-H to C-N bonds.
    Zalatan DN; Du Bois J
    Top Curr Chem; 2010; 292():347-78. PubMed ID: 21500412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview.
    Fernandes HS; Teixeira CSS; Sousa SF; Cerqueira NMFSA
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31277490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
    Cohen SM
    Acc Chem Res; 2017 Aug; 50(8):2007-2016. PubMed ID: 28715203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterometallic triiron-oxo/hydroxo clusters: effect of redox-inactive metals.
    Herbert DE; Lionetti D; Rittle J; Agapie T
    J Am Chem Soc; 2013 Dec; 135(51):19075-8. PubMed ID: 24304416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidoreductases and metal cofactors in the functioning of the earth.
    Hay Mele B; Monticelli M; Leone S; Bastoni D; Barosa B; Cascone M; Migliaccio F; Montemagno F; Ricciardelli A; Tonietti L; Rotundi A; Cordone A; Giovannelli D
    Essays Biochem; 2023 Aug; 67(4):653-670. PubMed ID: 37503682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.