These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29161718)

  • 1. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Blood Purif; 2018; 45(1-3):46-52. PubMed ID: 29161718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Plasma Proteins on the Transport and Surface Characteristics of Polysulfone/Polyethersulfone and Asymmetric Cellulose Triacetate High Flux Dialyzers.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Artif Organs; 2018 Nov; 42(11):1070-1077. PubMed ID: 29774568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer.
    Sunohara T; Masuda T
    Contrib Nephrol; 2017; 189():215-221. PubMed ID: 27951571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The past, present and future of the dialyzer.
    Mineshima M
    Contrib Nephrol; 2015; 185():8-14. PubMed ID: 26023010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dialyzer-dependent changes in solute and water permeability with bleach reprocessing.
    Scott MK; Mueller BA; Sowinski KM; Clark WR
    Am J Kidney Dis; 1999 Jan; 33(1):87-96. PubMed ID: 9915272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-membrane interactions during hemodialysis: effects on solute transport.
    Morti SM; Zydney AL
    ASAIO J; 1998; 44(4):319-26. PubMed ID: 9682960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis.
    Langsdorf LJ; Zydney AL
    J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose triacetate as a high-performance membrane.
    Sunohara T; Masuda T
    Contrib Nephrol; 2011; 173():156-163. PubMed ID: 21865788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a new cellulose triacetate membrane with a microgradient porous structure for hemodialysis.
    Akizawa T; Kinugasa E; Sato Y; Kohjiro S; Naitoh H; Azuma M; Mizutani S; Ideura T
    ASAIO J; 1998; 44(5):M584-6. PubMed ID: 9804500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study comparing the efficiency of a novel asymmetric cellulose triacetate (ATA) dialyser membrane (Solacea-190H) to a standard high flux polysulfone dialyser membrane (FX-80) in the setting of extended hours haemodialysis.
    Kameshwar K; Damasiewicz MJ; Polkinghorne KR; Kerr PG
    Nephrology (Carlton); 2022 Jun; 27(6):494-500. PubMed ID: 35195932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocontrast removal by dialysis membranes.
    Gouge SF; Moore J; Atkins F; Hirszel P
    Blood Purif; 1991; 9(4):182-7. PubMed ID: 1818581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incidence of Hypersensitivity Reactions During Hemodialysis.
    Esteras R; Martín-Navarro J; Ledesma G; Fernández-Prado R; Carreño G; Cintra M; Cidraque I; Sanz I; Tarragón B; Alexandru S; Milla M; Astudillo E; Sánchez E; Mas S; Tejeiro RD; Ortiz A; Sánchez R; González-Parra E
    Kidney Blood Press Res; 2018; 43(5):1472-1478. PubMed ID: 30235456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of insulin adsorption behavior of dialyzer membranes used in hemodialysis.
    Abe M; Okada K; Ikeda K; Matsumoto S; Soma M; Matsumoto K
    Artif Organs; 2011 Apr; 35(4):398-403. PubMed ID: 21314833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of peracetic acid reprocessing on the transport characteristics of polysulfone hemodialyzers.
    Wolff SH; Zydney AL
    Artif Organs; 2005 Feb; 29(2):166-73. PubMed ID: 15670286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical evaluation of plasma insulin and C-peptide levels with 3 different high-flux dialyzers in diabetic patients on hemodialysis.
    Abe M; Okada K; Maruyama T; Inoshita A; Ikeda K; Uto E; Kikuchi F; Matsumoto K
    Int J Artif Organs; 2008 Oct; 31(10):898-904. PubMed ID: 19009508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of blood contact and reuse on the transport properties of high-flux dialysis membranes.
    Kunas GA; Burke RA; Brierton MA; Ofsthun NJ
    ASAIO J; 1996; 42(4):288-94. PubMed ID: 8828786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro comparison of peracetic acid and bleach cleaning of polysulfone hemodialysis membranes.
    Shao J; Wolff S; Zydney AL
    Artif Organs; 2007 Jun; 31(6):452-60. PubMed ID: 17537057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodixanol is readily eliminated by hemodialysis.
    Berg KJ; Rolfsen B; Stake G
    Acta Radiol; 1998 Jul; 39(4):372-4. PubMed ID: 9685821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ofloxacin clearance during hemodialysis: a comparison of polysulfone and cellulose acetate hemodialyzers.
    Thalhammer F; Kletzmayr J; El Menyawi I; Kovarik J; Rosenkranz AR; Traunmüller F; Hörl WH; Burgmann H
    Am J Kidney Dis; 1998 Oct; 32(4):642-5. PubMed ID: 9774127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of peracetic acid-hydrogen peroxide reprocessing on dialyzer solute and water permeability.
    Scott MK; Mueller BA; Sowinski KM
    Pharmacotherapy; 1999 Sep; 19(9):1042-9. PubMed ID: 10610010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.