BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29161760)

  • 1. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination.
    Hesse E; O'Brien S; Tromas N; Bayer F; Luján AM; van Veen EM; Hodgson DJ; Buckling A
    Ecol Lett; 2018 Jan; 21(1):117-127. PubMed ID: 29161760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa.
    O'Brien S; Hodgson DJ; Buckling A
    Proc Biol Sci; 2014 Jul; 281(1787):. PubMed ID: 24898376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT-based analysis of siderophore-metal ion interaction for efficient heavy metal remediation.
    Xu YC; Li N; Yan X; Zou HX
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):91780-91793. PubMed ID: 37479932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Community composition drives siderophore dynamics in multispecies bacterial communities.
    O'Brien S; Culbert CT; Barraclough TG
    BMC Ecol Evol; 2023 Sep; 23(1):45. PubMed ID: 37658316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropogenic remediation of heavy metals selects against natural microbial remediation.
    Hesse E; Padfield D; Bayer F; van Veen EM; Bryan CG; Buckling A
    Proc Biol Sci; 2019 Jun; 286(1905):20190804. PubMed ID: 31213187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress causes interspecific facilitation within a compost community.
    Hesse E; O'Brien S; Luján AM; Sanders D; Bayer F; van Veen EM; Hodgson DJ; Buckling A
    Ecol Lett; 2021 Oct; 24(10):2169-2177. PubMed ID: 34259374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of siderophore-producing and arsenic-resistant bacteria in arsenic-contaminated environment].
    Xia Q; Wang J; Wan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):450-454. PubMed ID: 32237539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.
    Rajkumar M; Ae N; Prasad MN; Freitas H
    Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, characterization, and evaluation of a high-siderophore-yielding bacterium from heavy metal-contaminated soil.
    Wang Y; Huang W; Li Y; Yu F; Penttinen P
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3888-3899. PubMed ID: 34402014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils.
    Hussein KA; Joo JH
    Curr Microbiol; 2014 Jun; 68(6):717-23. PubMed ID: 24509699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection.
    Lee W; van Baalen M; Jansen VA
    J Theor Biol; 2016 Jan; 388():61-71. PubMed ID: 26471069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd(2.).
    Złoch M; Thiem D; Gadzała-Kopciuch R; Hrynkiewicz K
    Chemosphere; 2016 Aug; 156():312-325. PubMed ID: 27183333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost of cooperation rules selection for cheats in bacterial metapopulations.
    Dumas Z; Kümmerli R
    J Evol Biol; 2012 Mar; 25(3):473-84. PubMed ID: 22168669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.
    Dimkpa CO; Svatos A; Dabrowska P; Schmidt A; Boland W; Kothe E
    Chemosphere; 2008 Dec; 74(1):19-25. PubMed ID: 18986679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.
    Gaonkar T; Bhosle S
    Chemosphere; 2013 Nov; 93(9):1835-43. PubMed ID: 23838040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput Siderophore Screening from Environmental Samples: Plant Tissues, Bulk Soils, and Rhizosphere Soils.
    Lewis RW; Islam AA; Dilla-Ermita CJ; Hulbert SH; Sullivan TS
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.
    Ren Y; Niu J; Huang W; Peng D; Xiao Y; Zhang X; Liang Y; Liu X; Yin H
    BMC Microbiol; 2016 Jun; 16(1):110. PubMed ID: 27301322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.
    Schütze E; Ahmed E; Voit A; Klose M; Greyer M; Svatoš A; Merten D; Roth M; Holmström SJ; Kothe E
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19376-83. PubMed ID: 25414032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.