These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29161836)

  • 1. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity.
    Yan P
    Math Biosci Eng; 2018 Feb; 15(1):275-298. PubMed ID: 29161836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemiological models with non-exponentially distributed disease stages and applications to disease control.
    Feng Z; Xu D; Zhao H
    Bull Math Biol; 2007 Jul; 69(5):1511-36. PubMed ID: 17237913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of quarantine and self-protection processes in epidemic spreading control on scale-free networks.
    Esquivel-Gómez JJ; Barajas-Ramírez JG
    Chaos; 2018 Jan; 28(1):013119. PubMed ID: 29390620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease.
    Scalia Tomba G; Wallinga J
    Math Biosci; 2008; 214(1-2):70-2. PubMed ID: 18387639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of quarantine in six endemic models for infectious diseases.
    Hethcote H; Zhien M; Shengbing L
    Math Biosci; 2002; 180():141-60. PubMed ID: 12387921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the impact of sanitation and awareness on the spread of infectious diseases.
    Rai RK; Misra AK; Takeuchi Y
    Math Biosci Eng; 2019 Jan; 16(2):667-700. PubMed ID: 30861661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven contact structures: From homogeneous mixing to multilayer networks.
    Aleta A; Ferraz de Arruda G; Moreno Y
    PLoS Comput Biol; 2020 Jul; 16(7):e1008035. PubMed ID: 32673307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A symbolic investigation of superspreaders.
    McCaig C; Begon M; Norman R; Shankland C
    Bull Math Biol; 2011 Apr; 73(4):777-94. PubMed ID: 21181505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model.
    Kong L; Wang J; Han W; Cao Z
    Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The change of susceptibility following infection can induce failure to predict outbreak potential by R₀.
    Nakata Y; Omori R
    Math Biosci Eng; 2019 Jan; 16(2):813-830. PubMed ID: 30861667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of R0 for age-of-infection models.
    Yang CK; Brauer F
    Math Biosci Eng; 2008 Jul; 5(3):585-99. PubMed ID: 18616360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Final and peak epidemic sizes for SEIR models with quarantine and isolation.
    Feng Z
    Math Biosci Eng; 2007 Oct; 4(4):675-86. PubMed ID: 17924718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mathematical modelling of an infectious disease in a prison setting and optimal preventative control strategies].
    Trujillo-Salazar CA; Toro-Zapata HD; Muñoz-Loaiza A
    Rev Salud Publica (Bogota); 2013; 15(6):943-56. PubMed ID: 25124356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse.
    Ren S
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Lyapunov functions for some models of infectious diseases in vivo: from simple models to complex models.
    Kajiwara T; Sasaki T; Takeuchi Y
    Math Biosci Eng; 2015 Feb; 12(1):117-33. PubMed ID: 25811335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical framework to identify invariant thresholds in infectious disease epidemiology.
    Gomes MGM; Gjini E; Lopes JS; Souto-Maior C; Rebelo C
    J Theor Biol; 2016 Apr; 395():97-102. PubMed ID: 26869215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.