These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 29161856)
1. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Du LJ; Li WT; Wang JB Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1187-1213. PubMed ID: 29161856 [TBL] [Abstract][Full Text] [Related]
2. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments. Fan M; Wang K; Jiang D Math Biosci; 1999 Aug; 160(1):47-61. PubMed ID: 10465931 [TBL] [Abstract][Full Text] [Related]
3. Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion. Chow PL; Tam WC Bull Math Biol; 1976; 38(06):643-58. PubMed ID: 1033006 [No Abstract] [Full Text] [Related]
4. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Afraimovich V; Tristan I; Huerta R; Rabinovich MI Chaos; 2008 Dec; 18(4):043103. PubMed ID: 19123613 [TBL] [Abstract][Full Text] [Related]
5. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion. Zhao G; Ruan S J Math Pures Appl; 2011 Jun; 96(6):627-671. PubMed ID: 21572575 [TBL] [Abstract][Full Text] [Related]
6. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays. Meng X; Chen L J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297 [TBL] [Abstract][Full Text] [Related]
7. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related]
8. Stochastic analysis of the Lotka-Volterra model for ecosystems. Cai GQ; Lin YK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438 [TBL] [Abstract][Full Text] [Related]
9. Population dynamics and wave propagation in a Lotka-Volterra system with spatial diffusion. Wang MX; Lai PY Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051908. PubMed ID: 23214815 [TBL] [Abstract][Full Text] [Related]
10. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator. Nie L; Teng Z; Hu L; Peng J Biosystems; 2009 Nov; 98(2):67-72. PubMed ID: 19523503 [TBL] [Abstract][Full Text] [Related]
11. Existence of traveling wave solutions in a diffusive predator-prey model. Huang J; Lu G; Ruan S J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231 [TBL] [Abstract][Full Text] [Related]
12. Lotka-Volterra system with Volterra multiplier. Gürlebeck K; Ji X Adv Exp Med Biol; 2011; 696():647-55. PubMed ID: 21431606 [TBL] [Abstract][Full Text] [Related]
13. Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Ma X; Liu R; Cai L Math Biosci Eng; 2024 Jan; 21(1):444-473. PubMed ID: 38303430 [TBL] [Abstract][Full Text] [Related]
14. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme. Dubey B; Zhao TG; Jonsson M; Rahmanov H J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470 [TBL] [Abstract][Full Text] [Related]
15. The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Xiong JJ; Li X; Wang H Math Biosci Eng; 2019 Mar; 16(4):2717-2737. PubMed ID: 31137234 [TBL] [Abstract][Full Text] [Related]
16. The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. Milgram A J Theor Biol; 2011 Feb; 271(1):157-8. PubMed ID: 21145326 [TBL] [Abstract][Full Text] [Related]
17. Diffusion-mediated persistence in two-species competition Lotka-Volterra model. Takeuchi Y Math Biosci; 1989 Jul; 95(1):65-83. PubMed ID: 2520178 [TBL] [Abstract][Full Text] [Related]
18. The effect of initial values on extinction or persistence in degenerate diffusion competition systems. Bo WJ; Lin G; Ruan S J Math Biol; 2020 Apr; 80(5):1423-1458. PubMed ID: 31955211 [TBL] [Abstract][Full Text] [Related]
19. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Mukhopadhyay B; Bhattacharyya R Bull Math Biol; 2006 Feb; 68(2):293-313. PubMed ID: 16794932 [TBL] [Abstract][Full Text] [Related]
20. Invasion dynamics of competing species with stage-structure. Bewick S; Wang G; Younes H; Li B; Fagan WF J Theor Biol; 2017 Dec; 435():12-21. PubMed ID: 28782553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]