These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29161994)
1. Synthesis, characterization and application of biodegradable polymer grafted novel bioprosthetic tissue. Pal A; Pathak C; Vernon B J Biomater Sci Polym Ed; 2018 Feb; 29(3):217-235. PubMed ID: 29161994 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Wen X; Tresco PA Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567 [TBL] [Abstract][Full Text] [Related]
3. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
4. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. Liu Q; Cai C; Dong CM J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173 [TBL] [Abstract][Full Text] [Related]
5. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Lai JY; Hsieh AC Biomaterials; 2012 Mar; 33(7):2372-87. PubMed ID: 22182746 [TBL] [Abstract][Full Text] [Related]
6. Current development of biodegradable polymeric materials for biomedical applications. Song R; Murphy M; Li C; Ting K; Soo C; Zheng Z Drug Des Devel Ther; 2018; 12():3117-3145. PubMed ID: 30288019 [TBL] [Abstract][Full Text] [Related]
7. Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release. Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S Int J Pharm; 2010 Jun; 392(1-2):42-50. PubMed ID: 20227474 [TBL] [Abstract][Full Text] [Related]
8. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings. Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. Peng T; Cheng SX; Zhuo RX J Biomed Mater Res A; 2006 Jan; 76(1):163-73. PubMed ID: 16258962 [TBL] [Abstract][Full Text] [Related]
10. Recent developments in biodegradable synthetic polymers. Gunatillake P; Mayadunne R; Adhikari R Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198 [TBL] [Abstract][Full Text] [Related]
11. Highly effective and slow-biodegradable network-type cationic gene delivery polymer: small library-like approach synthesis and characterization. Kim HJ; Kwon MS; Choi JS; Yang SM; Yoon JK; Kim K; Park JS Biomaterials; 2006 Apr; 27(10):2292-301. PubMed ID: 16313954 [TBL] [Abstract][Full Text] [Related]
12. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications. Hu Y; Li Y; Xu FJ Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064 [TBL] [Abstract][Full Text] [Related]
13. Determining the protein drug release characteristics and cell adhesion to a PLLA or PLGA biodegradable polymer membrane. Burns SA; Hard R; Hicks WL; Bright FV; Cohan D; Sigurdson L; Gardella JA J Biomed Mater Res A; 2010 Jul; 94(1):27-37. PubMed ID: 20091703 [TBL] [Abstract][Full Text] [Related]
14. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
15. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Nicolas J; Mura S; Brambilla D; Mackiewicz N; Couvreur P Chem Soc Rev; 2013 Feb; 42(3):1147-235. PubMed ID: 23238558 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Zhao Z; He M; Yin L; Bao J; Shi L; Wang B; Tang C; Yin C Biomacromolecules; 2009 Mar; 10(3):565-72. PubMed ID: 19175304 [TBL] [Abstract][Full Text] [Related]
17. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. Ma Z; Zhu XX J Mater Chem B; 2019 Mar; 7(9):1361-1378. PubMed ID: 32255007 [TBL] [Abstract][Full Text] [Related]
18. Biological compatibility, thermal and in vitro simulated degradation for poly(p-dioxanone)/poly(lactide-co-glycolide)/poly(ethylene succinate-co-glycolide). Zhong G; Liu Y; Liu C; Li X; Lin J; Lanzon AL; Zhang H; Chen M J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1817-1835. PubMed ID: 33894107 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. Huynh CT; Nguyen MK; Jeong IK; Kim SW; Lee DS J Biomater Sci Polym Ed; 2012; 23(8):1091-106. PubMed ID: 21619729 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of poly(lactide-co-glycolide-co-ε-caprolactone)-graft-mannosylated poly(ethylene oxide) copolymers by combination of "clip" and "click" chemistries. Freichels H; Pourcelle V; Auzély-Velty R; Marchand-Brynaert J; Jérôme C Biomacromolecules; 2012 Mar; 13(3):760-8. PubMed ID: 22329463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]