These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 29162105)
1. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910. Huang T; Tan H; Lu F; Chen G; Wu Z Microb Cell Fact; 2017 Nov; 16(1):208. PubMed ID: 29162105 [TBL] [Abstract][Full Text] [Related]
2. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910. Wang M; Huang T; Chen G; Wu Z Appl Microbiol Biotechnol; 2017 Apr; 101(8):3121-3130. PubMed ID: 28091787 [TBL] [Abstract][Full Text] [Related]
3. Sodium starch octenyl succinate facilitated the production of water-soluble yellow pigments in Monascus ruber fermentation. Huang ZF; Yang SZ; Liu HQ; Tian XF; Wu ZQ Appl Microbiol Biotechnol; 2021 Sep; 105(18):6691-6706. PubMed ID: 34463799 [TBL] [Abstract][Full Text] [Related]
4. Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascus ruber CGMCC10910. Huang T; Tan H; Chen G; Wang L; Wu Z AMB Express; 2017 Dec; 7(1):134. PubMed ID: 28651383 [TBL] [Abstract][Full Text] [Related]
5. Improving mycelial morphology and adherent growth as well as metabolism of Monascus yellow pigments using nitrate resources. Yang SZ; Huang ZF; Liu HQ; Hu X; Wu ZQ Appl Microbiol Biotechnol; 2020 Nov; 104(22):9607-9617. PubMed ID: 33044600 [TBL] [Abstract][Full Text] [Related]
6. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber. Huang T; Wang M; Shi K; Chen G; Tian X; Wu Z AMB Express; 2017 Dec; 7(1):79. PubMed ID: 28401504 [TBL] [Abstract][Full Text] [Related]
7. Tracking of pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592. Chen G; Bei Q; Huang T; Wu Z Microb Cell Fact; 2017 Oct; 16(1):172. PubMed ID: 28978326 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Chen G; Yang S; Wang C; Shi K; Zhao X; Wu Z Appl Microbiol Biotechnol; 2020 Mar; 104(6):2469-2479. PubMed ID: 31993704 [TBL] [Abstract][Full Text] [Related]
9. Evaluating Antitumor and Antioxidant Activities of Yellow Tan H; Xing Z; Chen G; Tian X; Wu Z Molecules; 2018 Dec; 23(12):. PubMed ID: 30544614 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the pigment production by changing Cell morphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation. Chen G; Zhao W; Zhao L; Song D; Chen B; Zhao X; Hu T J Appl Microbiol; 2023 Oct; 134(10):. PubMed ID: 37858303 [TBL] [Abstract][Full Text] [Related]
11. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology. Lv J; Zhang BB; Liu XD; Zhang C; Chen L; Xu GR; Cheung PCK J Biosci Bioeng; 2017 Oct; 124(4):452-458. PubMed ID: 28625612 [TBL] [Abstract][Full Text] [Related]
12. Kinetic of orange pigment production from Monascus ruber on submerged fermentation. Vendruscolo F; Schmidell W; de Oliveira D; Ninow JL Bioprocess Biosyst Eng; 2017 Jan; 40(1):115-121. PubMed ID: 27687221 [TBL] [Abstract][Full Text] [Related]
13. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa. Zhang X; Xue C; Zhao F; Li D; Yin J; Zhang C; Caiyin Q; Lu W Microb Cell Fact; 2014 Aug; 13():98. PubMed ID: 25158803 [TBL] [Abstract][Full Text] [Related]
14. Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation. Chen G; Bei Q; Huang T; Wu Z Appl Microbiol Biotechnol; 2018 Jan; 102(1):117-126. PubMed ID: 29098409 [TBL] [Abstract][Full Text] [Related]
15. Genetic responses to adding nitrates to improve hydrophilic yellow pigment in Monascus fermentation. Huang Z; Hu T; Yang S; Tian X; Wu Z Appl Microbiol Biotechnol; 2023 Feb; 107(4):1341-1359. PubMed ID: 36705673 [TBL] [Abstract][Full Text] [Related]
16. Pigment fingerprint profile during extractive fermentation with Monascus anka GIM 3.592. Shi K; Tang R; Huang T; Wang L; Wu Z BMC Biotechnol; 2017 May; 17(1):46. PubMed ID: 28545553 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of microbial pigment production from Monascus ruber by sodium octanoate addition. Martins TÁ; Vendruscolo F Acta Sci Pol Technol Aliment; 2020; 19(4):445-456. PubMed ID: 33179484 [TBL] [Abstract][Full Text] [Related]
18. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Li L; Chen S; Gao M; Ding B; Zhang J; Zhou Y; Liu Y; Yang H; Wu Q; Chen F Appl Microbiol Biotechnol; 2019 Oct; 103(20):8393-8402. PubMed ID: 31501941 [TBL] [Abstract][Full Text] [Related]
19. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. Shi K; Song D; Chen G; Pistolozzi M; Wu Z; Quan L J Biosci Bioeng; 2015 Aug; 120(2):145-54. PubMed ID: 25648278 [TBL] [Abstract][Full Text] [Related]
20. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Liu Q; Xie N; He Y; Wang L; Shao Y; Zhao H; Chen F Appl Microbiol Biotechnol; 2014 Jan; 98(1):285-96. PubMed ID: 24162083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]