These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29162131)

  • 1. Absence of nuclease activity in commonly used oxygen-scavenging systems.
    Gahlon HL; Poudevigne-Durance P; Rueda D
    BMC Res Notes; 2017 Nov; 10(1):606. PubMed ID: 29162131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments.
    Aitken CE; Marshall RA; Puglisi JD
    Biophys J; 2008 Mar; 94(5):1826-35. PubMed ID: 17921203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and Purification of Nuclease-Free Oxygen Scavenger Protocatechuate 3,4-Dioxygenase.
    Messer RK; Lopez MA; Senavirathne G; Yoder KE
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging.
    Senavirathne G; Lopez MA; Messer R; Fishel R; Yoder KE
    Anal Biochem; 2018 Sep; 556():78-84. PubMed ID: 29932890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread nuclease contamination in commonly used oxygen-scavenging systems.
    Senavirathne G; Liu J; Lopez MA; Hanne J; Martin-Lopez J; Lee JB; Yoder KE; Fishel R
    Nat Methods; 2015 Oct; 12(10):901-2. PubMed ID: 26418762
    [No Abstract]   [Full Text] [Related]  

  • 6. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum.
    Shen X; Liu S
    Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments.
    Swoboda M; Henig J; Cheng HM; Brugger D; Haltrich D; Plumeré N; Schlierf M
    ACS Nano; 2012 Jul; 6(7):6364-9. PubMed ID: 22703450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of (+)-catechin by Acinetobacter calcoaceticus MTC 127.
    Arunachalam M; Mohan N; Sugadev R; Chellappan P; Mahadevan A
    Biochim Biophys Acta; 2003 Jun; 1621(3):261-5. PubMed ID: 12787923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of eugenol via protocatechuic acid by thermophilic Geobacillus sp. AY 946034 strain.
    Giedraityte G; Kalėdienė L
    J Microbiol Biotechnol; 2014 Apr; 24(4):475-82. PubMed ID: 24375415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065.
    Iwagami SG; Yang K; Davies J
    Appl Environ Microbiol; 2000 Apr; 66(4):1499-508. PubMed ID: 10742233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and electronic structure study of the enzyme-substrate complex of intradiol dioxygenases: substrate activation by a high-spin ferric non-heme iron site.
    Pau MY; Davis MI; Orville AM; Lipscomb JD; Solomon EI
    J Am Chem Soc; 2007 Feb; 129(7):1944-58. PubMed ID: 17256852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe.
    Shi X; Lim J; Ha T
    Anal Chem; 2010 Jul; 82(14):6132-8. PubMed ID: 20583766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2.
    Guzik U; Hupert-Kocurek K; Sałek K; Wojcieszyńska D
    World J Microbiol Biotechnol; 2013 Feb; 29(2):267-73. PubMed ID: 23014843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments.
    Patil PV; Ballou DP
    Anal Biochem; 2000 Nov; 286(2):187-92. PubMed ID: 11067739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Res Microbiol; 1992; 143(3):333-9. PubMed ID: 1448618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
    Pometto AL; Sutherland JB; Crawford DL
    Can J Microbiol; 1981 Jun; 27(6):636-8. PubMed ID: 7260738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of protocatechuate by Bacillus macerans.
    Crawford RL; Bromley JW; Perkins-Olson PE
    Appl Environ Microbiol; 1979 Mar; 37(3):614-8. PubMed ID: 453834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases.
    D'Argenio DA; Vetting MW; Ohlendorf DH; Ornston LN
    J Bacteriol; 1999 Oct; 181(20):6478-87. PubMed ID: 10515940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halogenated protocatechuates as substrates for protocatechuate dioxygenase from Pseudomonas cepacia.
    Walsh TA; Ballou DP
    J Biol Chem; 1983 Dec; 258(23):14413-21. PubMed ID: 6643491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent proton magnetic resonance dispersion in protocatechuate 3,4-dioxygenase and complexes with 3-halo-4-hydroxybenzoate inhibitors.
    Felton RH; Gordon SL; Sowell AL; May SW
    Biochemistry; 1984 Aug; 23(17):3955-9. PubMed ID: 6435670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.