These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29162376)

  • 1. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.
    London SE
    Behav Processes; 2019 Jun; 163():13-23. PubMed ID: 29162376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volumetric development of the zebra finch brain throughout the first 200 days of post-hatch life traced by in vivo MRI.
    Hamaide J; De Groof G; Van Ruijssevelt L; Lukacova K; Van Audekerke J; Verhoye M; Van der Linden A
    Neuroimage; 2018 Dec; 183():227-238. PubMed ID: 30107257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a robotic zebra finch for experimental studies on developmental song learning.
    Araguas A; Guellaï B; Gauthier P; Richer F; Montone G; Chopin A; Derégnaucourt S
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35048975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic gene expression in the song system of zebra finches during the song learning period.
    Olson CR; Hodges LK; Mello CV
    Dev Neurobiol; 2015 Dec; 75(12):1315-38. PubMed ID: 25787707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-fostering diminishes song discrimination in zebra finches (Taeniopygia guttata).
    Campbell DL; Hauber ME
    Anim Cogn; 2009 May; 12(3):481-90. PubMed ID: 19130101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Song perception during the sensitive period of song learning in zebra finches (Taeniopygia guttata).
    Braaten RF; Petzoldt M; Colbath A
    J Comp Psychol; 2006 May; 120(2):79-88. PubMed ID: 16719585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song.
    Derégnaucourt S; Poirier C; Kant AV; Linden AV; Gahr M
    J Physiol Paris; 2013 Jun; 107(3):210-8. PubMed ID: 22982543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perineuronal nets and vocal plasticity in songbirds: A proposed mechanism to explain the difference between closed-ended and open-ended learning.
    Cornez G; Madison FN; Van der Linden A; Cornil C; Yoder KM; Ball GF; Balthazart J
    Dev Neurobiol; 2017 Sep; 77(8):975-994. PubMed ID: 28170164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional manipulation of mTOR signaling disrupts socially mediated vocal learning in juvenile songbirds.
    Ahmadiantehrani S; London SE
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9463-9468. PubMed ID: 28739951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and genetic control of brain and song structure in the zebra finch.
    Woodgate JL; Buchanan KL; Bennett AT; Catchpole CK; Brighton R; Leitner S
    Evolution; 2014 Jan; 68(1):230-40. PubMed ID: 24102614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches.
    Merullo DP; Asogwa CN; Sanchez-Valpuesta M; Hayase S; Pattnaik BR; Wada K; Riters LV
    Dev Neurobiol; 2018 Jul; 78(7):671-686. PubMed ID: 29569407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors limiting song acquisition in adult zebra finches.
    Funabiki Y; Funabiki K
    Dev Neurobiol; 2009 Sep; 69(11):752-9. PubMed ID: 19623623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene manipulation to test links between genome, brain and behavior in developing songbirds: a test case.
    London SE
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural response of female zebra finches (Taeniopygia guttata) to conspecific, heterospecific, and isolate song depends on early-life song exposure.
    Diez A; Cui A; MacDougall-Shackleton SA
    Behav Processes; 2019 Jun; 163():37-44. PubMed ID: 29274763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mind the gap: Neural coding of species identity in birdsong prosody.
    Araki M; Bandi MM; Yazaki-Sugiyama Y
    Science; 2016 Dec; 354(6317):1282-1287. PubMed ID: 27940872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mirrored patterns of lateralized neuronal activation reflect old and new memories in the avian auditory cortex.
    Olson EM; Maeda RK; Gobes SM
    Neuroscience; 2016 Aug; 330():395-402. PubMed ID: 27288718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation between extension of the sensitive period for avian vocal learning and dendritic spine loss in the song nucleus lMAN.
    Heinrich JE; Nordeen KW; Nordeen EJ
    Neurobiol Learn Mem; 2005 Mar; 83(2):143-50. PubMed ID: 15721798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensorimotor area in the songbird brain is required for production of vocalizations in the song learning period of development.
    Piristine HC; Choetso T; Gobes SM
    Dev Neurobiol; 2016 Nov; 76(11):1213-1225. PubMed ID: 26898771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized brain activation specific to auditory memory in a female songbird.
    Terpstra NJ; Bolhuis JJ; Riebel K; van der Burg JM; den Boer-Visser AM
    J Comp Neurol; 2006 Feb; 494(5):784-91. PubMed ID: 16374807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mate call as reward: Acoustic communication signals can acquire positive reinforcing values during adulthood in female zebra finches (Taeniopygia guttata).
    Hernandez AM; Perez EC; Mulard H; Mathevon N; Vignal C
    J Comp Psychol; 2016 Feb; 130(1):36-43. PubMed ID: 26881942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.