These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 29162641)
1. Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Na CH; Barbhuiya MA; Kim MS; Verbruggen S; Eacker SM; Pletnikova O; Troncoso JC; Halushka MK; Menschaert G; Overall CM; Pandey A Genome Res; 2018 Jan; 28(1):25-36. PubMed ID: 29162641 [TBL] [Abstract][Full Text] [Related]
2. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. Michel AM; Andreev DE; Baranov PV BMC Bioinformatics; 2014 Nov; 15(1):380. PubMed ID: 25413677 [TBL] [Abstract][Full Text] [Related]
3. Translation initiation at AUG and non-AUG triplets in plants. Fang JC; Liu MJ Plant Sci; 2023 Oct; 335():111822. PubMed ID: 37574140 [TBL] [Abstract][Full Text] [Related]
4. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Ichihara K; Matsumoto A; Nishida H; Kito Y; Shimizu H; Shichino Y; Iwasaki S; Imami K; Ishihama Y; Nakayama KI Nucleic Acids Res; 2021 Jul; 49(13):7298-7317. PubMed ID: 34226921 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Fritsch C; Herrmann A; Nothnagel M; Szafranski K; Huse K; Schumann F; Schreiber S; Platzer M; Krawczak M; Hampe J; Brosch M Genome Res; 2012 Nov; 22(11):2208-18. PubMed ID: 22879431 [TBL] [Abstract][Full Text] [Related]
6. TITER: predicting translation initiation sites by deep learning. Zhang S; Hu H; Jiang T; Zhang L; Zeng J Bioinformatics; 2017 Jul; 33(14):i234-i242. PubMed ID: 28881981 [TBL] [Abstract][Full Text] [Related]
7. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Li YR; Liu MJ Genome Res; 2020 Oct; 30(10):1418-1433. PubMed ID: 32973042 [TBL] [Abstract][Full Text] [Related]
8. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms. Michel AM; Ahern AM; Donohue CA; Baranov PV Proteomics; 2015 Jul; 15(14):2410-6. PubMed ID: 25736862 [TBL] [Abstract][Full Text] [Related]
9. Global mapping of translation initiation sites by TIS profiling in budding yeast. Hollerer I; Powers EN; Brar GA STAR Protoc; 2021 Mar; 2(1):100250. PubMed ID: 33458709 [TBL] [Abstract][Full Text] [Related]
10. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved Wu TY; Li YR; Chang KJ; Fang JC; Urano D; Liu MJ Genome Res; 2024 Mar; 34(2):272-285. PubMed ID: 38479836 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and differential analysis of translational initiation. Zhang P; He D; Xu Y; Hou J; Pan BF; Wang Y; Liu T; Davis CM; Ehli EA; Tan L; Zhou F; Hu J; Yu Y; Chen X; Nguyen TM; Rosen JM; Hawke DH; Ji Z; Chen Y Nat Commun; 2017 Nov; 8(1):1749. PubMed ID: 29170441 [TBL] [Abstract][Full Text] [Related]
12. Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. Domier LL; McCoppin NK; D'Arcy CJ Virology; 2000 Mar; 268(2):264-71. PubMed ID: 10704335 [TBL] [Abstract][Full Text] [Related]
13. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Spealman P; Naik AW; May GE; Kuersten S; Freeberg L; Murphy RF; McManus J Genome Res; 2018 Feb; 28(2):214-222. PubMed ID: 29254944 [TBL] [Abstract][Full Text] [Related]
14. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG. Beck HJ; Janssen GR J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048 [TBL] [Abstract][Full Text] [Related]
15. 5'-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Wang XQ; Rothnagel JA Nucleic Acids Res; 2004; 32(4):1382-91. PubMed ID: 14990743 [TBL] [Abstract][Full Text] [Related]
16. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. Yang Z; Cao S; Martens CA; Porcella SF; Xie Z; Ma M; Shen B; Moss B J Virol; 2015 Jul; 89(13):6874-86. PubMed ID: 25903347 [TBL] [Abstract][Full Text] [Related]
17. PreTIS: A Tool to Predict Non-canonical 5' UTR Translational Initiation Sites in Human and Mouse. Reuter K; Biehl A; Koch L; Helms V PLoS Comput Biol; 2016 Oct; 12(10):e1005170. PubMed ID: 27768687 [TBL] [Abstract][Full Text] [Related]
18. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Van Damme P; Gawron D; Van Criekinge W; Menschaert G Mol Cell Proteomics; 2014 May; 13(5):1245-61. PubMed ID: 24623590 [TBL] [Abstract][Full Text] [Related]
19. Detecting actively translated open reading frames in ribosome profiling data. Calviello L; Mukherjee N; Wyler E; Zauber H; Hirsekorn A; Selbach M; Landthaler M; Obermayer B; Ohler U Nat Methods; 2016 Feb; 13(2):165-70. PubMed ID: 26657557 [TBL] [Abstract][Full Text] [Related]
20. Ribosomes stalling on uORF1 in the Xenopus Cx41 5' UTR inhibit downstream translation initiation. Meijer HA; Thomas AA Nucleic Acids Res; 2003 Jun; 31(12):3174-84. PubMed ID: 12799445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]