BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29163034)

  • 1. Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons.
    Tang Y; Liu ML; Zang T; Zhang CL
    Front Mol Neurosci; 2017; 10():359. PubMed ID: 29163034
    [No Abstract]   [Full Text] [Related]  

  • 2. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures.
    Aversano S; Caiazza C; Caiazzo M
    Front Aging Neurosci; 2022; 14():1069482. PubMed ID: 36620769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Human iPSC-derived Spinal Motor Neurons by Single-cell RNA Sequencing.
    Thiry L; Hamel R; Pluchino S; Durcan T; Stifani S
    Neuroscience; 2020 Dec; 450():57-70. PubMed ID: 32380268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations.
    Prigione A; Hossini AM; Lichtner B; Serin A; Fauler B; Megges M; Lurz R; Lehrach H; Makrantonaki E; Zouboulis CC; Adjaye J
    PLoS One; 2011; 6(11):e27352. PubMed ID: 22110631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Non-Toxic Concentration of Telomerase Inhibitor BIBR1532 Fails to Reduce
    Pandya VA; Crerar H; Mitchell JS; Patani R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape.
    Chen Z; Chang WY; Etheridge A; Strickfaden H; Jin Z; Palidwor G; Cho JH; Wang K; Kwon SY; Doré C; Raymond A; Hotta A; Ellis J; Kandel RA; Dilworth FJ; Perkins TJ; Hendzel MJ; Galas DJ; Stanford WL
    Aging Cell; 2017 Aug; 16(4):870-887. PubMed ID: 28597562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity.
    Birger A; Ben-Dor I; Ottolenghi M; Turetsky T; Gil Y; Sweetat S; Perez L; Belzer V; Casden N; Steiner D; Izrael M; Galun E; Feldman E; Behar O; Reubinoff B
    EBioMedicine; 2019 Dec; 50():274-289. PubMed ID: 31787569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing cellular aging in human stem cell models of amyotrophic lateral sclerosis.
    Ziff OJ; Patani R
    Aging Cell; 2019 Feb; 18(1):e12862. PubMed ID: 30565851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease.
    Jaiswal MK
    Neural Regen Res; 2017 May; 12(5):723-736. PubMed ID: 28616022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Motor Neurons With SOD1-G93A Mutation Generated From CRISPR/Cas9 Gene-Edited iPSCs Develop Pathological Features of Amyotrophic Lateral Sclerosis.
    Kim BW; Ryu J; Jeong YE; Kim J; Martin LJ
    Front Cell Neurosci; 2020; 14():604171. PubMed ID: 33328898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming fibroblasts and peripheral blood cells from a C9ORF72 patient: A proof-of-principle study.
    Bardelli D; Sassone F; Colombrita C; Volpe C; Gumina V; Peverelli S; Catusi I; Ratti A; Silani V; Bossolasco P
    J Cell Mol Med; 2020 Apr; 24(7):4051-4060. PubMed ID: 32125773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription Factor-Mediated Differentiation of Motor Neurons from Human Pluripotent Stem Cells.
    Wu J; Tang Y
    Methods Mol Biol; 2023; 2593():245-258. PubMed ID: 36513936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects.
    Mertens J; Paquola ACM; Ku M; Hatch E; Böhnke L; Ladjevardi S; McGrath S; Campbell B; Lee H; Herdy JR; Gonçalves JT; Toda T; Kim Y; Winkler J; Yao J; Hetzer MW; Gage FH
    Cell Stem Cell; 2015 Dec; 17(6):705-718. PubMed ID: 26456686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells.
    Guo W; Fumagalli L; Prior R; Van Den Bosch L
    Front Neurosci; 2017; 11():671. PubMed ID: 29326542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient.
    Bossolasco P; Sassone F; Gumina V; Peverelli S; Garzo M; Silani V
    Stem Cell Res; 2018 Jul; 30():61-68. PubMed ID: 29800782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations.
    Bursch F; Kalmbach N; Naujock M; Staege S; Eggenschwiler R; Abo-Rady M; Japtok J; Guo W; Hensel N; Reinhardt P; Boeckers TM; Cantz T; Sterneckert J; Van Den Bosch L; Hermann A; Petri S; Wegner F
    Hum Mol Genet; 2019 Sep; 28(17):2835-2850. PubMed ID: 31108504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and axonal transport phenotypes due to the C9ORF72 HRE in iPSC motor and sensory neurons.
    Scaber J; Thomas-Wright I; Clark AJ; Xu Y; Vahsen BF; Carcolé M; Dafinca R; Farrimond L; Isaacs AM; Bennett DL; Talbot K
    Stem Cell Reports; 2024 Jun; ():. PubMed ID: 38876108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple Derivation of Spinal Motor Neurons from ESCs/iPSCs Using Sendai Virus Vectors.
    Goto K; Imamura K; Komatsu K; Mitani K; Aiba K; Nakatsuji N; Inoue M; Kawata A; Yamashita H; Takahashi R; Inoue H
    Mol Ther Methods Clin Dev; 2017 Mar; 4():115-125. PubMed ID: 28344997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration.
    Gudenschwager C; Chavez I; Cardenas C; Gonzalez-Billault C
    Oxid Med Cell Longev; 2021; 2021():5586052. PubMed ID: 34950417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.