These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29163057)

  • 21. Differences Between Interictal and Ictal Generalized Spike-Wave Discharges in Childhood Absence Epilepsy: A MEG Study.
    Shi Q; Zhang T; Miao A; Sun J; Sun Y; Chen Q; Hu Z; Xiang J; Wang X
    Front Neurol; 2019; 10():1359. PubMed ID: 32038453
    [No Abstract]   [Full Text] [Related]  

  • 22. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.
    Sugihara I; Lang EJ; Llinás R
    J Physiol; 1993 Oct; 470():243-71. PubMed ID: 8308729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random.
    Keating JG; Thach WT
    J Neurophysiol; 1995 Apr; 73(4):1329-40. PubMed ID: 7643151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberrant cerebellar Purkinje cell activity as the cause of motor attacks in a mouse model of episodic ataxia type 2.
    Tara E; Vitenzon A; Hess E; Khodakhah K
    Dis Model Mech; 2018 Sep; 11(9):. PubMed ID: 30279196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex Spike Wars: a New Hope.
    Streng ML; Popa LS; Ebner TJ
    Cerebellum; 2018 Dec; 17(6):735-746. PubMed ID: 29982917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum.
    Eccles JC; Llinás R; Sasaki K
    J Physiol; 1966 Jan; 182(2):268-96. PubMed ID: 5944665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation.
    Servais L; Cheron G
    Neuroscience; 2005; 134(4):1247-59. PubMed ID: 16054763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential participation of some 'specific' and 'non-specific' thalamic nuclei in generalized spike and wave discharges of feline generalized penicillin epilepsy.
    McLachlan RS; Gloor P; Avoli M
    Brain Res; 1984 Jul; 307(1-2):277-87. PubMed ID: 6466997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the Purkinje cell activity increase induced by suppression of inferior olive activity.
    Savio T; Tempia F
    Exp Brain Res; 1985; 57(3):456-63. PubMed ID: 2984036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling absence seizures from the cerebellar nuclei via activation of the G
    Schwitalla JC; Pakusch J; Mücher B; Brückner A; Depke DA; Fenzl T; De Zeeuw CI; Kros L; Hoebeek FE; Mark MD
    Cell Mol Life Sci; 2022 Mar; 79(4):197. PubMed ID: 35305155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():215-40. PubMed ID: 3253432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous and harmaline-stimulated Purkinje cell activity in rats with a genetic movement disorder.
    Stratton SE; Lorden JF; Mays LE; Oltmans GA
    J Neurosci; 1988 Sep; 8(9):3327-36. PubMed ID: 3171680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Functional Organization of the Olivo-Cerebellar System as Examined by Multiple Purkinje Cell Recordings.
    Llinás R; Sasaki K
    Eur J Neurosci; 1989 Jan; 1(6):587-602. PubMed ID: 12106117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats.
    Kanyshkova T; Ehling P; Cerina M; Meuth P; Zobeiri M; Meuth SG; Pape HC; Budde T
    Mol Cell Neurosci; 2014 Jul; 61():110-22. PubMed ID: 24914823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.
    Najac M; Raman IM
    J Neurosci; 2015 Jan; 35(2):544-9. PubMed ID: 25589749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time window control: a model for cerebellar function based on synchronization, reverberation, and time slicing.
    Kistler WM; van Hemmen JL; De Zeeuw CI
    Prog Brain Res; 2000; 124():275-97. PubMed ID: 10943132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of nucleus prepositus hypoglossi lesions on visual climbing fiber activity in the rabbit flocculus.
    Arts MP; De Zeeuw CI; Lips J; Rosbak E; Simpson JI
    J Neurophysiol; 2000 Nov; 84(5):2552-63. PubMed ID: 11067997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.
    Hewitt AL; Popa LS; Ebner TJ
    J Neurosci; 2015 Jan; 35(3):1106-24. PubMed ID: 25609626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.
    Burroughs A; Wise AK; Xiao J; Houghton C; Tang T; Suh CY; Lang EJ; Apps R; Cerminara NL
    J Physiol; 2017 Jan; 595(1):283-299. PubMed ID: 27265808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.