These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 29163467)

  • 1. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs.
    Spiljar M; Merkler D; Trajkovski M
    Front Immunol; 2017; 8():1353. PubMed ID: 29163467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation.
    Gasaly N; de Vos P; Hermoso MA
    Front Immunol; 2021; 12():658354. PubMed ID: 34122415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut Microbiota and Immune System Interactions.
    Yoo JY; Groer M; Dutra SVO; Sarkar A; McSkimming DI
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33076307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism.
    Yiu JH; Dorweiler B; Woo CW
    J Mol Med (Berl); 2017 Jan; 95(1):13-20. PubMed ID: 27639584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.
    Rizzetto L; Fava F; Tuohy KM; Selmi C
    J Autoimmun; 2018 Aug; 92():12-34. PubMed ID: 29861127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations.
    van de Wouw M; Boehme M; Lyte JM; Wiley N; Strain C; O'Sullivan O; Clarke G; Stanton C; Dinan TG; Cryan JF
    J Physiol; 2018 Oct; 596(20):4923-4944. PubMed ID: 30066368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity.
    Wei YX; Zheng KY; Wang YG
    World J Gastroenterol; 2021 Sep; 27(33):5555-5565. PubMed ID: 34588751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism.
    Gao J; Xu K; Liu H; Liu G; Bai M; Peng C; Li T; Yin Y
    Front Cell Infect Microbiol; 2018; 8():13. PubMed ID: 29468141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis.
    Iacob S; Iacob DG
    Front Microbiol; 2019; 10():1676. PubMed ID: 31447793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review.
    Ali Q; Ma S; La S; Guo Z; Liu B; Gao Z; Farooq U; Wang Z; Zhu X; Cui Y; Li D; Shi Y
    Anim Biosci; 2022 Oct; 35(10):1461-1478. PubMed ID: 35507857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease.
    Caputi V; Giron MC
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29882798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs).
    Ratajczak W; Rył A; Mizerski A; Walczakiewicz K; Sipak O; Laszczyńska M
    Acta Biochim Pol; 2019 Mar; 66(1):1-12. PubMed ID: 30831575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
    Stecher B
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease?
    Parodi B; Kerlero de Rosbo N
    Front Immunol; 2021; 12():718220. PubMed ID: 34621267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids.
    Li JM; Yu R; Zhang LP; Wen SY; Wang SJ; Zhang XY; Xu Q; Kong LD
    Microbiome; 2019 Jun; 7(1):98. PubMed ID: 31255176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease.
    Gonçalves P; Araújo JR; Di Santo JP
    Inflamm Bowel Dis; 2018 Feb; 24(3):558-572. PubMed ID: 29462379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causality of small and large intestinal microbiota in weight regulation and insulin resistance.
    Scheithauer TP; Dallinga-Thie GM; de Vos WM; Nieuwdorp M; van Raalte DH
    Mol Metab; 2016 Sep; 5(9):759-70. PubMed ID: 27617199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet.
    Calabrese CM; Valentini A; Calabrese G
    Front Nutr; 2020; 7():612773. PubMed ID: 33521039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeostasis of the gut barrier and potential biomarkers.
    Wells JM; Brummer RJ; Derrien M; MacDonald TT; Troost F; Cani PD; Theodorou V; Dekker J; Méheust A; de Vos WM; Mercenier A; Nauta A; Garcia-Rodenas CL
    Am J Physiol Gastrointest Liver Physiol; 2017 Mar; 312(3):G171-G193. PubMed ID: 27908847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Host energy regulation via SCFAs receptors, as dietary nutrition sensors, by gut microbiota].
    Kimura I
    Yakugaku Zasshi; 2014; 134(10):1037-42. PubMed ID: 25274213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.