BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29163636)

  • 1. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics.
    House JS; Grimm FA; Jima DD; Zhou YH; Rusyn I; Wright FA
    Front Genet; 2017; 8():168. PubMed ID: 29163636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Transcriptomics Platform for Screening Environmental Chemicals.
    Harrill JA; Everett LJ; Haggard DE; Sheffield T; Bundy JL; Willis CM; Thomas RS; Shah I; Judson RS
    Toxicol Sci; 2021 Apr; 181(1):68-89. PubMed ID: 33538836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic Analysis of Human Naïve and Primed Pluripotent Stem Cells.
    Ghosh A; Som A
    Methods Mol Biol; 2022; 2416():213-237. PubMed ID: 34870839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
    Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U
    BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics Pipeline for Transcriptome Sequencing Analysis.
    Djebali S; Wucher V; Foissac S; Hitte C; Corre E; Derrien T
    Methods Mol Biol; 2017; 1468():201-19. PubMed ID: 27662878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of the TempO-Seq S1500+ Platform to RNA-Seq and Microarray Using Rat Liver Mode of Action Samples.
    Bushel PR; Paules RS; Auerbach SS
    Front Genet; 2018; 9():485. PubMed ID: 30420870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.
    Chen C; Le H; Goudar CT
    Biotechnol Prog; 2015; 31(5):1150-62. PubMed ID: 26150012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Bioinformatics Approaches for Next-Generation Sequencing Analysis of microRNAs with a Toxicogenomics Study Design.
    Bisgin H; Gong B; Wang Y; Tong W
    Front Genet; 2018; 9():22. PubMed ID: 29467792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes.
    Hook SE; Twine NA; Simpson SL; Spadaro DA; Moncuquet P; Wilkins MR
    Aquat Toxicol; 2014 Aug; 153():73-88. PubMed ID: 24434169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.
    Tripathi KP; Evangelista D; Zuccaro A; Guarracino MR
    PLoS One; 2015; 10(11):e0140268. PubMed ID: 26581084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic profiling of rat liver samples in a comprehensive study design by RNA-Seq.
    Gong B; Wang C; Su Z; Hong H; Thierry-Mieg J; Thierry-Mieg D; Shi L; Auerbach SS; Tong W; Xu J
    Sci Data; 2014; 1():140021. PubMed ID: 25977778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments.
    Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS
    Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the effects of experimental parameters and data modeling approaches on in vitro transcriptomic point-of-departure estimates.
    Harrill JA; Everett LJ; Haggard DE; Bundy JL; Willis CM; Shah I; Friedman KP; Basili D; Middleton A; Judson RS
    Toxicology; 2024 Jan; 501():153694. PubMed ID: 38043774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling.
    Monger C; Kelly PS; Gallagher C; Clynes M; Barron N; Clarke C
    Biotechnol J; 2015 Jul; 10(7):950-66. PubMed ID: 26058739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.
    Liu X; Shi X; Chen C; Zhang L
    BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.