These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29163874)

  • 1. A facile route to electronically conductive polyelectrolyte brushes as platforms of molecular wires.
    Wolski K; Szuwarzyński M; Zapotoczny S
    Chem Sci; 2015 Mar; 6(3):1754-1760. PubMed ID: 29163874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Templating Copolymerization to Produce Robust Conductive Nanocoatings Based on Conjugated Polymer Brushes with Implementable Memristive Characteristics.
    Wolski K; Smenda J; Świerz W; Dąbczyński P; Marzec M; Zapotoczny S
    Small; 2024 Jul; 20(29):e2309216. PubMed ID: 38334248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ladder-like Polymer Brushes Containing Conjugated Poly(Propylenedioxythiophene) Chains.
    Grześ G; Wolski K; Uchacz T; Bała J; Louis B; Scheblykin IG; Zapotoczny S
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering of mixed conjugated/polyelectrolyte brushes - Tailoring interface structure and electrical properties.
    Wolski K; Smenda J; Grobelny A; Dąbczyński P; Marzec M; Cernescu A; Wytrwal M; Bernasik A; Rysz J; Zapotoczny S
    J Colloid Interface Sci; 2023 Mar; 634():209-220. PubMed ID: 36535159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Route to Conjugated Donor-Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers.
    Grobelny A; Lorenc K; Skowron Ł; Zapotoczny S
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Raspberry-like Nanoparticles via Surface Grafting of Positively Charged Polyelectrolyte Brushes: Colloidal Stability and Surface Properties.
    Aldakkan BS; Chalmpes N; Qi G; Hammami MA; Kanj MY; Giannelis EP
    Langmuir; 2024 Mar; 40(11):5837-5849. PubMed ID: 38457691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer Brushes: Efficient Synthesis and Applications.
    Feng C; Huang X
    Acc Chem Res; 2018 Sep; 51(9):2314-2323. PubMed ID: 30137964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures.
    Smenda J; Wolski K; Chajec K; Zapotoczny S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.
    Majoinen J; Walther A; McKee JR; Kontturi E; Aseyev V; Malho JM; Ruokolainen J; Ikkala O
    Biomacromolecules; 2011 Aug; 12(8):2997-3006. PubMed ID: 21740051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductance of Poly(3-methylthiophene) Brushes.
    Roy A; Bougher TL; Geng R; Ke Y; Locklin J; Cola BA
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25578-85. PubMed ID: 27579585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns.
    Liu X; Chang H; Li Y; Huck WT; Zheng Z
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):529-35. PubMed ID: 20356201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length.
    Koufakis E; Manouras T; Anastasiadis SH; Vamvakaki M
    Langmuir; 2020 Apr; 36(13):3482-3493. PubMed ID: 32168453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox active polymer brushes with phenothiazine moieties.
    Golriz AA; Kaule T; Untch MB; Kolman K; Berger R; Gutmann JS
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2485-94. PubMed ID: 23406201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization.
    Ayres N; Boyes SG; Brittain WJ
    Langmuir; 2007 Jan; 23(1):182-9. PubMed ID: 17190502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diels-Alder "Clickable" Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform.
    Yuksekdag YN; Gevrek TN; Sanyal A
    ACS Macro Lett; 2017 Apr; 6(4):415-420. PubMed ID: 35610862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.
    Pan G; Zhang Y; Guo X; Li C; Zhang H
    Biosens Bioelectron; 2010 Nov; 26(3):976-82. PubMed ID: 20837394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.