BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29163946)

  • 1. Vertebral body segmentation with
    Egger J; Nimsky C; Chen X
    SAGE Open Med; 2017; 5():2050312117740984. PubMed ID: 29163946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GBM volumetry using the 3D Slicer medical image computing platform.
    Egger J; Kapur T; Fedorov A; Pieper S; Miller JV; Veeraraghavan H; Freisleben B; Golby AJ; Nimsky C; Kikinis R
    Sci Rep; 2013; 3():1364. PubMed ID: 23455483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical evaluation of semi-automatic open-source algorithmic software segmentation of the mandibular bone: Practical feasibility and assessment of a new course of action.
    Wallner J; Hochegger K; Chen X; Mischak I; Reinbacher K; Pau M; Zrnc T; Schwenzer-Zimmerer K; Zemann W; Schmalstieg D; Egger J
    PLoS One; 2018; 13(5):e0196378. PubMed ID: 29746490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pituitary adenoma volumetry with 3D Slicer.
    Egger J; Kapur T; Nimsky C; Kikinis R
    PLoS One; 2012; 7(12):e51788. PubMed ID: 23240062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on multiplatform evaluations of semi-automatic open-source based image segmentation for cranio-maxillofacial surgery.
    Wallner J; Schwaiger M; Hochegger K; Gsaxner C; Zemann W; Egger J
    Comput Methods Programs Biomed; 2019 Dec; 182():105102. PubMed ID: 31610359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid positron emission tomography segmentation of heterogeneous lung tumors using 3D Slicer: improved GrowCut algorithm with threshold initialization.
    T Thomas HM; Devakumar D; Sasidharan B; Bowen SR; Heck DK; James Jebaseelan Samuel E
    J Med Imaging (Bellingham); 2017 Jan; 4(1):011009. PubMed ID: 28149920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver segmentation based on Snakes Model and improved GrowCut algorithm in abdominal CT image.
    Jiang H; He B; Ma Z; Zong M; Zhou X; Fujita H
    Comput Math Methods Med; 2013; 2013():958398. PubMed ID: 24066017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.
    Liu S; Xie Y; Reeves AP
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):789-801. PubMed ID: 26558791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Automatic Segmentation of Vertebral Bodies in MR Images of Human Lumbar Spines.
    Kim S; Bae WC; Masuda K; Chung CB; Hwang D
    Appl Sci (Basel); 2018 Sep; 8(9):. PubMed ID: 30637136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gray matter segmentation of the spinal cord with active contours in MR images.
    Datta E; Papinutto N; Schlaeger R; Zhu A; Carballido-Gamio J; Henry RG
    Neuroimage; 2017 Feb; 147():788-799. PubMed ID: 27495383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of mammography by applying GrowCut for mass detection.
    Cordeiro FR; Santos WP; Silva-Filhoa AG
    Stud Health Technol Inform; 2013; 192():87-91. PubMed ID: 23920521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer.
    Owens CA; Peterson CB; Tang C; Koay EJ; Yu W; Mackin DS; Li J; Salehpour MR; Fuentes DT; Court LE; Yang J
    PLoS One; 2018; 13(10):e0205003. PubMed ID: 30286184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual and semiautomatic segmentation of bone sarcomas on MRI have high similarity.
    Dionísio FCF; Oliveira LS; Hernandes MA; Engel EE; Rangayyan RM; Azevedo-Marques PM; Nogueira-Barbosa MH
    Braz J Med Biol Res; 2020; 53(2):e8962. PubMed ID: 32022102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butterfly Effect in Chaotic Image Segmentation.
    Mărginean R; Andreica A; Dioşan L; Bálint Z
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebral body segmentation in wide range clinical routine spine MRI data.
    Hille G; Saalfeld S; Serowy S; Tönnies K
    Comput Methods Programs Biomed; 2018 Mar; 155():93-99. PubMed ID: 29512508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic 3D segmentation of the thoracolumbar spinal cord and the vertebral canal from T2-weighted MRI using K-means clustering algorithm.
    Sabaghian S; Dehghani H; Batouli SAH; Khatibi A; Oghabian MA
    Spinal Cord; 2020 Jul; 58(7):811-820. PubMed ID: 32132652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of malignant gliomas through remote collaboration and statistical fusion.
    Xu Z; Asman AJ; Singh E; Chambless L; Thompson R; Landman BA
    Med Phys; 2012 Oct; 39(10):5981-9. PubMed ID: 23039636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Preliminary results.
    Ruiz-Espana S; Domingo J; Diaz-Parra A; Dura E; D'Ocon-Alcaniz V; Arana E; Moratal D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2014-7. PubMed ID: 26736681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter.
    Dostál M; Keřkovský M; Korit Áková E; Němcová E; Stulík J; Staňková M; Bernard V
    J Magn Reson Imaging; 2018 Nov; 48(5):1217-1227. PubMed ID: 29707834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of vertebral fractures in DXA VFA images using statistical models of appearance and a semi-automatic segmentation.
    Roberts MG; Pacheco EM; Mohankumar R; Cootes TF; Adams JE
    Osteoporos Int; 2010 Dec; 21(12):2037-46. PubMed ID: 20135093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.