These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 29164457)
1. Drying-submergence alternation enhanced crystalline ratio and varied surface properties of iron plaque on rice (Oryza sativa) roots. Yang XJ; Xu Z; Shen H Environ Sci Pollut Res Int; 2018 Feb; 25(4):3571-3587. PubMed ID: 29164457 [TBL] [Abstract][Full Text] [Related]
2. The role of an Sb-oxidizing bacterium in modulating antimony speciation and iron plaque formation to reduce the accumulation and toxicity of Sb in rice (Oryza sativa L.). Wu J; Jiao Y; Ran M; Li J J Hazard Mater; 2024 May; 469():133897. PubMed ID: 38442599 [TBL] [Abstract][Full Text] [Related]
3. Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe+pH conditions. Li S; Chen S; Wang M; Lei X; Zheng H; Sun X; Wang L; Han Y Chemosphere; 2020 Jul; 251():126355. PubMed ID: 32169702 [TBL] [Abstract][Full Text] [Related]
4. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.). Wei T; Liu X; Dong M; Lv X; Hua L; Jia H; Ren X; Yu S; Guo J; Li Y J Environ Manage; 2021 Jan; 278(Pt 2):111533. PubMed ID: 33157466 [TBL] [Abstract][Full Text] [Related]
5. Effects of iron plaque and fatty acids on the transfer of BDE-209 from soil to rice under iron mineral Fenton-like oxidation condition. Gao Y; Tang X; Yin M; Cao H; Jian H; Wang J; Jia W; Wang C; Sun H Sci Total Environ; 2021 Jun; 772():145554. PubMed ID: 33770853 [TBL] [Abstract][Full Text] [Related]
6. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: Insights from hydroponic and soil cultivation. Xu B; Wang F; Zhang Q; Lan Q; Liu C; Guo X; Cai Q; Chen Y; Wang G; Ding J Ecotoxicol Environ Saf; 2018 Oct; 162():51-58. PubMed ID: 29960914 [TBL] [Abstract][Full Text] [Related]
7. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Sci Total Environ; 2021 Sep; 788():147786. PubMed ID: 34023601 [TBL] [Abstract][Full Text] [Related]
8. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Yang J; Liu Z; Wan X; Zheng G; Yang J; Zhang H; Guo L; Wang X; Zhou X; Guo Q; Xu R; Zhou G; Peters M; Zhu G; Wei R; Tian L; Han X Ecotoxicol Environ Saf; 2016 Jun; 128():206-12. PubMed ID: 26946285 [TBL] [Abstract][Full Text] [Related]
9. Antimony accumulation and iron plaque formation at different growth stages of rice (Oryza sativa L.). Long J; Tan D; Deng S; Li B; Ding D; Lei M Environ Pollut; 2019 Jun; 249():414-422. PubMed ID: 30913440 [TBL] [Abstract][Full Text] [Related]
10. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.). Xiao A; Li WC; Ye Z Ecotoxicol Environ Saf; 2020 Mar; 190():110136. PubMed ID: 31901806 [TBL] [Abstract][Full Text] [Related]
11. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K Liu ZD; Wang HC; Zhou Q; Xu RK Ecotoxicol Environ Saf; 2017 Nov; 145():207-213. PubMed ID: 28735157 [TBL] [Abstract][Full Text] [Related]
12. Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? Zandi P; Yang J; Xia X; Tian Y; Li Q; Możdżeń K; Barabasz-Krasny B; Wang Y J Hazard Mater; 2020 Apr; 388():121803. PubMed ID: 31836363 [TBL] [Abstract][Full Text] [Related]
13. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Yamaguchi N; Ohkura T; Takahashi Y; Maejima Y; Arao T Environ Sci Technol; 2014; 48(3):1549-56. PubMed ID: 24384039 [TBL] [Abstract][Full Text] [Related]
14. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Hu ZY; Zhu YG; Li M; Zhang LG; Cao ZH; Smith FA Environ Pollut; 2007 May; 147(2):387-93. PubMed ID: 16996667 [TBL] [Abstract][Full Text] [Related]
15. [Effect of different cultivation practices on Fe and Cd content in iron plaque outside rice root and Cd content in rice root]. Shi K; Zhang F; Liu X; Zhang X Ying Yong Sheng Tai Xue Bao; 2003 Aug; 14(8):1273-7. PubMed ID: 14655357 [TBL] [Abstract][Full Text] [Related]
16. Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates. Kerl CF; Ballaran TB; Planer-Friedrich B Environ Sci Technol; 2019 Dec; 53(23):13666-13674. PubMed ID: 31675232 [TBL] [Abstract][Full Text] [Related]
17. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil. Lai YC; Syu CH; Wang PJ; Lee DY; Fan C; Juang KW Sci Total Environ; 2018 Jan; 610-611():845-853. PubMed ID: 28826122 [TBL] [Abstract][Full Text] [Related]
18. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.). Zandi P; Yang J; Darma A; Bloem E; Xia X; Wang Y; Li Q; Schnug E Environ Geochem Health; 2023 Mar; 45(3):525-559. PubMed ID: 35288837 [TBL] [Abstract][Full Text] [Related]
19. Streaming potential method for characterizing interaction of electrical double layers between rice roots and Fe/Al oxide-coated quartz in situ. Liu ZD; Wang HC; Li JY; Xu RK Environ Sci Pollut Res Int; 2017 Oct; 24(30):23598-23606. PubMed ID: 28856587 [TBL] [Abstract][Full Text] [Related]
20. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil. Yan D; Ma W; Song X; Bao Y Environ Sci Pollut Res Int; 2017 Mar; 24(8):7544-7554. PubMed ID: 28116626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]