These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 29164646)

  • 1. B-factor profile prediction for RNA flexibility using support vector machines.
    Guruge I; Taherzadeh G; Zhan J; Zhou Y; Yang Y
    J Comput Chem; 2018 Mar; 39(8):407-411. PubMed ID: 29164646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Flexibility Profile of Ribosomal RNAs.
    Tian F; Zhang C; Fan X; Yang X; Wang X; Liang H
    Mol Inform; 2010 Oct; 29(10):707-15. PubMed ID: 27464014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-based prediction of protein-peptide binding sites using support vector machine.
    Taherzadeh G; Yang Y; Zhang T; Liew AW; Zhou Y
    J Comput Chem; 2016 May; 37(13):1223-9. PubMed ID: 26833816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    J Chem Inf Model; 2016 Oct; 56(10):2115-2122. PubMed ID: 27623166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted-persistent-homology-based machine learning for RNA flexibility analysis.
    Pun CS; Yong BYS; Xia K
    PLoS One; 2020; 15(8):e0237747. PubMed ID: 32822369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules.
    Muthukrishnan S; Puri M
    BMC Res Notes; 2018 May; 11(1):290. PubMed ID: 29751818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M; Gromiha MM; Raghava GP
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.
    Yang Y; Li X; Zhao H; Zhan J; Wang J; Zhou Y
    RNA; 2017 Jan; 23(1):14-22. PubMed ID: 27807179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of zinc binding sites in proteins using sequence derived information.
    Srivastava A; Kumar M
    J Biomol Struct Dyn; 2018 Dec; 36(16):4413-4423. PubMed ID: 29241411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting sumoylation sites using support vector machines based on various sequence features, conformational flexibility and disorder.
    Yavuz AS; Sezerman OU
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S18. PubMed ID: 25521314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EASE-MM: Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple Models.
    Folkman L; Stantic B; Sattar A; Zhou Y
    J Mol Biol; 2016 Mar; 428(6):1394-1405. PubMed ID: 26804571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DBSI server: DNA binding site identifier.
    Sukumar S; Zhu X; Ericksen SS; Mitchell JC
    Bioinformatics; 2016 Sep; 32(18):2853-5. PubMed ID: 27259543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.
    Choi D; Park B; Chae H; Lee W; Han K
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):16. PubMed ID: 28361677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment.
    Khoury GA; Smadbeck J; Kieslich CA; Koskosidis AJ; Guzman YA; Tamamis P; Floudas CA
    Proteins; 2017 Jun; 85(6):1078-1098. PubMed ID: 28241391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a sugar-binding residue prediction system from protein sequences using support vector machine.
    Banno M; Komiyama Y; Cao W; Oku Y; Ueki K; Sumikoshi K; Nakamura S; Terada T; Shimizu K
    Comput Biol Chem; 2017 Feb; 66():36-43. PubMed ID: 27889654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.