These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 29164706)
1. A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries. Hu Y; Ye D; Luo B; Hu H; Zhu X; Wang S; Li L; Peng S; Wang L Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29164706 [TBL] [Abstract][Full Text] [Related]
2. All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS Hu Y; Huang H; Yu D; Wang X; Li L; Hu H; Zhu X; Peng S; Wang L Nanomicro Lett; 2021 Jul; 13(1):159. PubMed ID: 34297240 [TBL] [Abstract][Full Text] [Related]
3. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. Zhang K; Lee TH; Cha JH; Varma RS; Choi JW; Jang HW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13573. PubMed ID: 31537878 [TBL] [Abstract][Full Text] [Related]
5. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
6. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries. Amin K; Meng Q; Ahmad A; Cheng M; Zhang M; Mao L; Lu K; Wei Z Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29226388 [TBL] [Abstract][Full Text] [Related]
7. Preparation and in-situ Raman characterization of binder-free u-GF@CFC cathode for rechargeable aluminum-ion battery. Liu C; Liu Z; Niu H; Wang C; Wang Z; Gao B; Liu J; Taylor M MethodsX; 2019; 6():2374-2383. PubMed ID: 31681538 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries. Ai Y; Wu SC; Wang K; Yang TY; Liu M; Liao HJ; Sun J; Chen JH; Tang SY; Wu DC; Su TY; Wang YC; Chen HC; Zhang S; Liu WW; Chen YZ; Lee L; He JH; Wang ZM; Chueh YL ACS Nano; 2020 Jul; 14(7):8539-8550. PubMed ID: 32520534 [TBL] [Abstract][Full Text] [Related]
9. Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance. Yu Z; Jiao S; Tu J; Luo Y; Song WL; Jiao H; Wang M; Chen H; Fang D ACS Nano; 2020 Mar; 14(3):3469-3476. PubMed ID: 32119521 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919 [TBL] [Abstract][Full Text] [Related]
11. A rechargeable aluminum-ion battery based on a VS Wu L; Sun R; Xiong F; Pei C; Han K; Peng C; Fan Y; Yang W; An Q; Mai L Phys Chem Chem Phys; 2018 Sep; 20(35):22563-22568. PubMed ID: 30159553 [TBL] [Abstract][Full Text] [Related]
12. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries. Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190 [TBL] [Abstract][Full Text] [Related]
14. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life. Kim J; Raj MR; Lee G Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082 [TBL] [Abstract][Full Text] [Related]
15. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries. Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193 [TBL] [Abstract][Full Text] [Related]
16. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum-Ion Batteries. Kong D; Cai T; Fan H; Hu H; Wang X; Cui Y; Wang D; Wang Y; Hu H; Wu M; Xue Q; Yan Z; Li X; Zhao L; Xing W Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202114681. PubMed ID: 34755421 [TBL] [Abstract][Full Text] [Related]
17. Self-Adaptive Re-Organization Enables Polythiophene as an Extraordinary Cathode Material for Aluminum-Ion Batteries with a Cycle Life of 100 000 Cycles. Zhang J; Wu Y; Liu M; Huang L; Li Y; Wu Y Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215408. PubMed ID: 36515631 [TBL] [Abstract][Full Text] [Related]
18. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195 [TBL] [Abstract][Full Text] [Related]
19. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682 [TBL] [Abstract][Full Text] [Related]
20. Heterostructure Engineering for Aluminum-Ion Batteries: Mechanism, Challenge, and Perspective. Yang C; Liang Z; Dong B; Guo Y; Xie W; Chen M; Zhang K; Zhou L Small; 2024 Nov; 20(48):e2405495. PubMed ID: 39235359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]