BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29164706)

  • 1. A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries.
    Hu Y; Ye D; Luo B; Hu H; Zhu X; Wang S; Li L; Peng S; Wang L
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29164706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS
    Hu Y; Huang H; Yu D; Wang X; Li L; Hu H; Zhu X; Peng S; Wang L
    Nanomicro Lett; 2021 Jul; 13(1):159. PubMed ID: 34297240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries.
    Zhang K; Lee TH; Cha JH; Varma RS; Choi JW; Jang HW; Shokouhimehr M
    Sci Rep; 2019 Sep; 9(1):13573. PubMed ID: 31537878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries.
    Amin K; Meng Q; Ahmad A; Cheng M; Zhang M; Mao L; Lu K; Wei Z
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29226388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and in-situ Raman characterization of binder-free u-GF@CFC cathode for rechargeable aluminum-ion battery.
    Liu C; Liu Z; Niu H; Wang C; Wang Z; Gao B; Liu J; Taylor M
    MethodsX; 2019; 6():2374-2383. PubMed ID: 31681538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries.
    Ai Y; Wu SC; Wang K; Yang TY; Liu M; Liao HJ; Sun J; Chen JH; Tang SY; Wu DC; Su TY; Wang YC; Chen HC; Zhang S; Liu WW; Chen YZ; Lee L; He JH; Wang ZM; Chueh YL
    ACS Nano; 2020 Jul; 14(7):8539-8550. PubMed ID: 32520534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance.
    Yu Z; Jiao S; Tu J; Luo Y; Song WL; Jiao H; Wang M; Chen H; Fang D
    ACS Nano; 2020 Mar; 14(3):3469-3476. PubMed ID: 32119521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rechargeable aluminum-ion battery based on a VS
    Wu L; Sun R; Xiong F; Pei C; Han K; Peng C; Fan Y; Yang W; An Q; Mai L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22563-22568. PubMed ID: 30159553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries.
    Zhou Y; Zhu Y; Xu B; Zhang X; Al-Ghanim KA; Mahboob S
    Nanomicro Lett; 2019 Mar; 11(1):29. PubMed ID: 34137979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum-Ion Batteries.
    Kong D; Cai T; Fan H; Hu H; Wang X; Cui Y; Wang D; Wang Y; Hu H; Wu M; Xue Q; Yan Z; Li X; Zhao L; Xing W
    Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202114681. PubMed ID: 34755421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Adaptive Re-Organization Enables Polythiophene as an Extraordinary Cathode Material for Aluminum-Ion Batteries with a Cycle Life of 100 000 Cycles.
    Zhang J; Wu Y; Liu M; Huang L; Li Y; Wu Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215408. PubMed ID: 36515631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries.
    Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M
    Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries.
    Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG
    J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries.
    Zhang Y; Li Y; Wang Y; Guo R; Liu W; Pei H; Yin G; Ye D; Yu S; Xie J
    J Colloid Interface Sci; 2019 Oct; 553():239-246. PubMed ID: 31207544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.