These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29164810)

  • 21. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries.
    Mao M; Tong Y; Zhang Q; Hu YS; Li H; Huang X; Chen L; Gu L; Suo L
    Nano Lett; 2020 Sep; 20(9):6852-6858. PubMed ID: 32790320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversible Anionic Redox Activities in Conventional LiNi
    Lee GH; Wu J; Kim D; Cho K; Cho M; Yang W; Kang YM
    Angew Chem Int Ed Engl; 2020 May; 59(22):8681-8688. PubMed ID: 32031283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Material Design Concept of Lithium-Excess Electrode Materials with Rocksalt-Related Structures for Rechargeable Non-Aqueous Batteries.
    Yabuuchi N
    Chem Rec; 2019 Apr; 19(4):690-707. PubMed ID: 30311732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anionic Redox in Rechargeable Lithium Batteries.
    Li B; Xia D
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28660661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the Chemistry of Organonitrogen Compounds for Promoting All-Organic Anionic Rechargeable Batteries.
    Jouhara A; Quarez E; Dolhem F; Armand M; Dupré N; Poizot P
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15680-15684. PubMed ID: 31429162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Metal-Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible Cationic and Anionic Redox Chemistry for High-Energy Sodium-Ion Batteries.
    Fang C; Huang Y; Yuan L; Liu Y; Chen W; Huang Y; Chen K; Han J; Liu Q; Huang Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6793-6797. PubMed ID: 28471036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anionic Redox Chemistry as a Clue for Understanding the Structural Behavior in Layered Cathode Materials.
    Lee W; Yun S; Li H; Kim J; Lee H; Kwon K; Lee JY; Choi YM; Yoon WS
    Small; 2020 Feb; 16(5):e1905875. PubMed ID: 31943743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of anionic redox in d
    Leube BT; Robert C; Foix D; Porcheron B; Dedryvère R; Rousse G; Salager E; Cabelguen PE; Abakumov AM; Vezin H; Doublet ML; Tarascon JM
    Nat Commun; 2021 Sep; 12(1):5485. PubMed ID: 34531403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible S
    Gao T; Hou S; Wang F; Ma Z; Li X; Xu K; Wang C
    Angew Chem Int Ed Engl; 2017 Oct; 56(43):13526-13530. PubMed ID: 28849616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amorphous MoS
    Ye H; Ma L; Zhou Y; Wang L; Han N; Zhao F; Deng J; Wu T; Li Y; Lu J
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13091-13096. PubMed ID: 29180431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of Transition Metal Chalcogenides and Halides as Electrode Materials for Thermal Batteries and Secondary Energy Storage Systems.
    Muthu P; Rajagopal S; Saju D; Kesavan V; Dellus A; Sadhasivam L; Chandrasekaran N
    ACS Omega; 2024 Feb; 9(7):7357-7374. PubMed ID: 38405478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic Molecular Intercalation Enabled Anionic Redox Chemistry with Fast Kinetics for High Performance Magnesium Storage.
    Deng R; Wang Z; Tan S; Lu G; Huang X; Qu B; Huang G; Xu C; Zhou X; Wang J; Pan F
    Small; 2024 Mar; 20(12):e2308329. PubMed ID: 37949813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes.
    Sathiya M; Rousse G; Ramesha K; Laisa CP; Vezin H; Sougrati MT; Doublet ML; Foix D; Gonbeau D; Walker W; Prakash AS; Ben Hassine M; Dupont L; Tarascon JM
    Nat Mater; 2013 Sep; 12(9):827-35. PubMed ID: 23852398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring Cation-Anion Redox Processes in One-Dimensional Linear Chain Vanadium Tetrasulfide Rechargeable Magnesium Ion Cathodes.
    Dey S; Lee J; Britto S; Stratford JM; Keyzer EN; Dunstan MT; Cibin G; Cassidy SJ; Elgaml M; Grey CP
    J Am Chem Soc; 2020 Nov; 142(46):19588-19601. PubMed ID: 33108185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.