These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 29164864)
1. Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Bruton TA; Sedlak DL Environ Sci Technol; 2017 Dec; 51(23):13878-13885. PubMed ID: 29164864 [TBL] [Abstract][Full Text] [Related]
2. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Bruton TA; Sedlak DL Chemosphere; 2018 Sep; 206():457-464. PubMed ID: 29775938 [TBL] [Abstract][Full Text] [Related]
3. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Park S; Lee LS; Medina VF; Zull A; Waisner S Chemosphere; 2016 Feb; 145():376-83. PubMed ID: 26692515 [TBL] [Abstract][Full Text] [Related]
4. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example. Milley SA; Koch I; Fortin P; Archer J; Reynolds D; Weber KP J Environ Manage; 2018 Sep; 222():122-131. PubMed ID: 29807261 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Shojaei M; Kumar N; Chaobol S; Wu K; Crimi M; Guelfo J Environ Sci Technol; 2021 Jul; 55(14):9805-9816. PubMed ID: 34228927 [TBL] [Abstract][Full Text] [Related]
6. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Houtz EF; Higgins CP; Field JA; Sedlak DL Environ Sci Technol; 2013 Aug; 47(15):8187-95. PubMed ID: 23886337 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams. Schaefer CE; Choyke S; Ferguson PL; Andaya C; Burant A; Maizel A; Strathmann TJ; Higgins CP Environ Sci Technol; 2018 Sep; 52(18):10689-10697. PubMed ID: 30130962 [TBL] [Abstract][Full Text] [Related]
8. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. Høisæter Å; Pfaff A; Breedveld GD J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240 [TBL] [Abstract][Full Text] [Related]
9. Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Xiao X; Ulrich BA; Chen B; Higgins CP Environ Sci Technol; 2017 Jun; 51(11):6342-6351. PubMed ID: 28582977 [TBL] [Abstract][Full Text] [Related]
10. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. Balgooyen S; Remucal CK Environ Sci Technol; 2023 Jan; 57(1):244-254. PubMed ID: 36573898 [TBL] [Abstract][Full Text] [Related]
11. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. Dasu K; Xia X; Siriwardena D; Klupinski TP; Seay B J Environ Manage; 2022 Jan; 301():113879. PubMed ID: 34619593 [TBL] [Abstract][Full Text] [Related]
12. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Larson ES; Conder JM; Arblaster JA Chemosphere; 2018 Jun; 201():335-341. PubMed ID: 29525662 [TBL] [Abstract][Full Text] [Related]
13. Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. Wu C; Wang Q; Chen H; Li M Water Res; 2022 Jul; 219():118542. PubMed ID: 35550967 [TBL] [Abstract][Full Text] [Related]
14. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Anderson RH; Long GC; Porter RC; Anderson JK Chemosphere; 2016 May; 150():678-685. PubMed ID: 26786021 [TBL] [Abstract][Full Text] [Related]
15. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Nickerson A; Rodowa AE; Adamson DT; Field JA; Kulkarni PR; Kornuc JJ; Higgins CP Environ Sci Technol; 2021 Jan; 55(1):313-323. PubMed ID: 33351591 [TBL] [Abstract][Full Text] [Related]
16. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Barzen-Hanson KA; Roberts SC; Choyke S; Oetjen K; McAlees A; Riddell N; McCrindle R; Ferguson PL; Higgins CP; Field JA Environ Sci Technol; 2017 Feb; 51(4):2047-2057. PubMed ID: 28098989 [TBL] [Abstract][Full Text] [Related]
17. Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. D'Agostino LA; Mabury SA Environ Sci Technol; 2017 Dec; 51(23):13603-13613. PubMed ID: 29110476 [TBL] [Abstract][Full Text] [Related]
18. Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. Maizel AC; Shea S; Nickerson A; Schaefer C; Higgins CP Environ Sci Technol; 2021 Nov; 55(21):14617-14627. PubMed ID: 34665614 [TBL] [Abstract][Full Text] [Related]
19. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions. Yin P; Hu Z; Song X; Liu J; Lin N Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27322298 [TBL] [Abstract][Full Text] [Related]
20. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Tenorio R; Liu J; Xiao X; Maizel A; Higgins CP; Schaefer CE; Strathmann TJ Environ Sci Technol; 2020 Jun; 54(11):6957-6967. PubMed ID: 32343565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]