These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 29164896)
1. Nuclear Magnetic Shielding of Monoboranes: Calculation and Assessment of Macháček J; Bühl M; Fanfrlík J; Hnyk D J Phys Chem A; 2017 Dec; 121(50):9631-9637. PubMed ID: 29164896 [No Abstract] [Full Text] [Related]
2. Effects of stereoelectronic interactions on the relativistic spin-orbit and paramagnetic components of the (13)C NMR shielding tensors of dihaloethenes. Viesser RV; Ducati LC; Autschbach J; Tormena CF Phys Chem Chem Phys; 2015 Jul; 17(29):19315-24. PubMed ID: 26138131 [TBL] [Abstract][Full Text] [Related]
3. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. Komorovský S; Repiský M; Malkina OL; Malkin VG J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162 [TBL] [Abstract][Full Text] [Related]
4. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I. Moncho S; Autschbach J Magn Reson Chem; 2010 Dec; 48 Suppl 1():S76-85. PubMed ID: 20586110 [TBL] [Abstract][Full Text] [Related]
5. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles. Radula-Janik K; Kupka T; Ejsmont K; Daszkiewicz Z; Sauer SP Magn Reson Chem; 2013 Oct; 51(10):630-5. PubMed ID: 23922027 [TBL] [Abstract][Full Text] [Related]
6. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods. Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118 [TBL] [Abstract][Full Text] [Related]
7. A combined experimental and quantum chemistry study of selenium chemical shift tensors. Demko BA; Eichele K; Wasylishen RE J Phys Chem A; 2006 Dec; 110(50):13537-50. PubMed ID: 17165881 [TBL] [Abstract][Full Text] [Related]
9. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals. Aquino F; Govind N; Autschbach J J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162 [TBL] [Abstract][Full Text] [Related]
11. Electric field gradients in Hg compounds: molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L Phys Chem Chem Phys; 2012 Dec; 14(46):16070-9. PubMed ID: 23111689 [TBL] [Abstract][Full Text] [Related]
12. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms. Maldonado AF; Aucar GA J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942 [TBL] [Abstract][Full Text] [Related]
13. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR. Schreckenbach G Inorg Chem; 2002 Dec; 41(25):6560-72. PubMed ID: 12470051 [TBL] [Abstract][Full Text] [Related]
14. Spin-orbit effects on the (119)Sn magnetic-shielding tensor in solids: a ZORA/DFT investigation. Alkan F; Holmes ST; Iuliucci RJ; Mueller KT; Dybowski C Phys Chem Chem Phys; 2016 Jul; 18(28):18914-22. PubMed ID: 27354312 [TBL] [Abstract][Full Text] [Related]
15. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers. Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739 [TBL] [Abstract][Full Text] [Related]
16. Relativistic effects on nuclear magnetic shieldings of CH(n)X(4-n) and CHXYZ (X, Y, Z = H, F, Cl, Br, I). Melo JI; Maldonado AF; Aucar GA J Chem Phys; 2012 Dec; 137(21):214319. PubMed ID: 23231243 [TBL] [Abstract][Full Text] [Related]
17. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol. Tsipis AC; Karapetsas IN Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094 [TBL] [Abstract][Full Text] [Related]
18. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides. Lantto P; Vaara J J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253 [TBL] [Abstract][Full Text] [Related]
19. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC) Häller LJ; Mas-Marzá E; Cybulski MK; Sanguramath RA; Macgregor SA; Mahon MF; Raynaud C; Russell CA; Whittlesey MK Dalton Trans; 2017 Feb; 46(9):2861-2873. PubMed ID: 28245022 [TBL] [Abstract][Full Text] [Related]
20. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Sinnecker S; Slep LD; Bill E; Neese F Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]