These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29165040)

  • 1. A code for transcription elongation speed.
    Cohen E; Zafrir Z; Tuller T
    RNA Biol; 2018 Jan; 15(1):81-94. PubMed ID: 29165040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between translating ribosomes and RNA polymerase in transcription elongation.
    Proshkin S; Rahmouni AR; Mironov A; Nudler E
    Science; 2010 Apr; 328(5977):504-8. PubMed ID: 20413502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codon influence on protein expression in E. coli correlates with mRNA levels.
    Boël G; Letso R; Neely H; Price WN; Wong KH; Su M; Luff J; Valecha M; Everett JK; Acton TB; Xiao R; Montelione GT; Aalberts DP; Hunt JF
    Nature; 2016 Jan; 529(7586):358-363. PubMed ID: 26760206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.
    Zhao F; Yu CH; Liu Y
    Nucleic Acids Res; 2017 Aug; 45(14):8484-8492. PubMed ID: 28582582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite effects of gene determinants on the translation speed and density of ribosomes.
    Tuller T; Veksler-Lublinsky I; Gazit N; Kupiec M; Ruppin E; Ziv-Ukelson M
    Genome Biol; 2011 Nov; 12(11):R110. PubMed ID: 22050731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.
    Castro-Roa D; Zenkin N
    Methods; 2015 Sep; 86():51-9. PubMed ID: 26080048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation.
    Shaham G; Tuller T
    DNA Res; 2018 Apr; 25(2):195-205. PubMed ID: 29161365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.
    Ben-Yehezkel T; Atar S; Zur H; Diament A; Goz E; Marx T; Cohen R; Dana A; Feldman A; Shapiro E; Tuller T
    RNA Biol; 2015; 12(9):972-84. PubMed ID: 26176266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial RNA polymerase can retain σ70 throughout transcription.
    Harden TT; Wells CD; Friedman LJ; Landick R; Hochschild A; Kondev J; Gelles J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):602-7. PubMed ID: 26733675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent kinetic model for transcription elongation by RNA polymerase.
    Bai L; Shundrovsky A; Wang MD
    J Mol Biol; 2004 Nov; 344(2):335-49. PubMed ID: 15522289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Translation Elongation Dynamics in the Context of an Escherichia coli Cell.
    Vieira JP; Racle J; Hatzimanikatis V
    Biophys J; 2016 May; 110(9):2120-31. PubMed ID: 27166819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times.
    Sharma AK; Ahmed N; O'Brien EP
    Phys Rev E; 2018 Feb; 97(2-1):022409. PubMed ID: 29548178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of a transcribing-translating expressome.
    Kohler R; Mooney RA; Mills DJ; Landick R; Cramer P
    Science; 2017 Apr; 356(6334):194-197. PubMed ID: 28408604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding.
    Yu CH; Dang Y; Zhou Z; Wu C; Zhao F; Sachs MS; Liu Y
    Mol Cell; 2015 Sep; 59(5):744-54. PubMed ID: 26321254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyper-regulation of pyr gene expression in Escherichia coli cells with slow ribosomes. Evidence for RNA polymerase pausing in vivo?
    Jensen KF
    Eur J Biochem; 1988 Aug; 175(3):587-93. PubMed ID: 3044790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome reinitiation can explain length-dependent translation of messenger RNA.
    Rogers DW; Böttcher MA; Traulsen A; Greig D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005592. PubMed ID: 28598992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation.
    Pop C; Rouskin S; Ingolia NT; Han L; Phizicky EM; Weissman JS; Koller D
    Mol Syst Biol; 2014 Dec; 10(12):770. PubMed ID: 25538139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation repression by an RNA polymerase elongation complex.
    Wilson HR; Zhou JG; Yu D; Court DL
    Mol Microbiol; 2004 Aug; 53(3):821-8. PubMed ID: 15255895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest.
    Stevenson-Jones F; Woodgate J; Castro-Roa D; Zenkin N
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8462-8467. PubMed ID: 32238560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.