These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29165245)

  • 1. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.
    Danner SM; Shevtsova NA; Frigon A; Rybak IA
    Elife; 2017 Nov; 6():. PubMed ID: 29165245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice.
    Zhang H; Shevtsova NA; Deska-Gauthier D; Mackay C; Dougherty KJ; Danner SM; Zhang Y; Rybak IA
    Elife; 2022 Apr; 11():. PubMed ID: 35476640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal control of locomotion before and after spinal cord injury.
    Danner SM; Shepard CT; Hainline C; Shevtsova NA; Rybak IA; Magnuson DSK
    Exp Neurol; 2023 Oct; 368():114496. PubMed ID: 37499972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of brainstem circuits controlling locomotor frequency and gait.
    Ausborn J; Shevtsova NA; Caggiano V; Danner SM; Rybak IA
    Elife; 2019 Jan; 8():. PubMed ID: 30663578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks.
    Bellardita C; Kiehn O
    Curr Biol; 2015 Jun; 25(11):1426-36. PubMed ID: 25959968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spinal circuit model with asymmetric cervical-lumbar layout controls backward locomotion and scratching in quadrupeds.
    Zhu Q; Han F; Yu Y; Wang F; Wang Q; Shakeel A
    Neural Netw; 2024 Oct; 178():106422. PubMed ID: 38901095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long ascending propriospinal neurons provide flexible, context-specific control of interlimb coordination.
    Pocratsky AM; Shepard CT; Morehouse JR; Burke DA; Riegler AS; Hardin JT; Beare JE; Hainline C; States GJ; Brown BL; Whittemore SR; Magnuson DS
    Elife; 2020 Sep; 9():. PubMed ID: 32902379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal control of locomotion before and after spinal cord injury.
    Danner SM; Shepard CT; Hainline C; Shevtsova NA; Rybak IA; Magnuson DSK
    bioRxiv; 2023 Jun; ():. PubMed ID: 36993490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion.
    Danner SM; Zhang H; Shevtsova NA; Borowska-Fielding J; Deska-Gauthier D; Rybak IA; Zhang Y
    Front Cell Neurosci; 2019; 13():516. PubMed ID: 31824266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.
    Ruder L; Takeoka A; Arber S
    Neuron; 2016 Dec; 92(5):1063-1078. PubMed ID: 27866798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries.
    Shepard CT; Brown BL; Van Rijswijck MA; Zalla RM; Burke DA; Morehouse JR; Riegler AS; Whittemore SR; Magnuson DSK
    Elife; 2023 Dec; 12():. PubMed ID: 38099572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of gait pattern on the type of coupling between hind- and forelimb generators: modelling study.
    Zmysłowski W; Kasicki S
    Acta Neurobiol Exp (Wars); 1982; 42(2):175-82. PubMed ID: 7168378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-mode operation of neuronal networks involved in left-right alternation.
    Talpalar AE; Bouvier J; Borgius L; Fortin G; Pierani A; Kiehn O
    Nature; 2013 Aug; 500(7460):85-8. PubMed ID: 23812590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.
    Hurteau MF; Thibaudier Y; Dambreville C; Danner SM; Rybak IA; Frigon A
    J Neurosci; 2018 Apr; 38(17):4104-4122. PubMed ID: 29563181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In mice lacking V2a interneurons, gait depends on speed of locomotion.
    Crone SA; Zhong G; Harris-Warrick R; Sharma K
    J Neurosci; 2009 May; 29(21):7098-109. PubMed ID: 19474336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion.
    Juvin L; Simmers J; Morin D
    J Neurosci; 2005 Jun; 25(25):6025-35. PubMed ID: 15976092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.