These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1187 related articles for article (PubMed ID: 29165391)
21. Loss of Von Hippel-Lindau ( Kim H; Shim BY; Lee SJ; Lee JY; Lee HJ; Kim IH Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575959 [TBL] [Abstract][Full Text] [Related]
22. Ferroptosis-associated genes and compounds in renal cell carcinoma. He C; Li Q; Wu W; Liu K; Li X; Zheng H; Lai Y Front Immunol; 2024; 15():1473203. PubMed ID: 39399506 [TBL] [Abstract][Full Text] [Related]
23. Dicer suppresses the malignant phenotype in VHL-deficient clear cell renal cell carcinoma by inhibiting HIF-2α. Fan Y; Li H; Ma X; Gao Y; Bao X; Du Q; Ma M; Liu K; Yao Y; Huang Q; Zhang Y; Zhang X Oncotarget; 2016 Apr; 7(14):18280-94. PubMed ID: 26943772 [TBL] [Abstract][Full Text] [Related]
24. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Krishnamachary B; Zagzag D; Nagasawa H; Rainey K; Okuyama H; Baek JH; Semenza GL Cancer Res; 2006 Mar; 66(5):2725-31. PubMed ID: 16510593 [TBL] [Abstract][Full Text] [Related]
25. Tubulocystic renal cell carcinoma: is there a rational reason for targeted therapy using angiogenic inhibition? Analysis of seven cases. Steiner P; Hora M; Stehlik J; Martinek P; Vanecek T; Petersson F; Michal M; Korabecna M; Travnicek I; Hes O Virchows Arch; 2013 Feb; 462(2):183-92. PubMed ID: 23296808 [TBL] [Abstract][Full Text] [Related]
26. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Zatyka M; da Silva NF; Clifford SC; Morris MR; Wiesener MS; Eckardt KU; Houlston RS; Richards FM; Latif F; Maher ER Cancer Res; 2002 Jul; 62(13):3803-11. PubMed ID: 12097293 [TBL] [Abstract][Full Text] [Related]
27. Renal cell carcinoma development and miRNAs: a possible link to the EGFR pathway. Dias F; Teixeira AL; Santos JI; Gomes M; Nogueira A; Assis J; Medeiros R Pharmacogenomics; 2013 Nov; 14(14):1793-803. PubMed ID: 24192126 [TBL] [Abstract][Full Text] [Related]
28. von Hippel-Lindau-dependent patterns of RNA polymerase II hydroxylation in human renal clear cell carcinomas. Yi Y; Mikhaylova O; Mamedova A; Bastola P; Biesiada J; Alshaikh E; Levin L; Sheridan RM; Meller J; Czyzyk-Krzeska MF Clin Cancer Res; 2010 Nov; 16(21):5142-52. PubMed ID: 20978146 [TBL] [Abstract][Full Text] [Related]
29. VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR. Liu C; Liu L; Wang K; Li XF; Ge LY; Ma RZ; Fan YD; Li LC; Liu ZF; Qiu M; Hao YC; Shi ZF; Xia CY; Strååt K; Huang Y; Ma LL; Xu D Oncogene; 2020 May; 39(21):4286-4298. PubMed ID: 32291411 [TBL] [Abstract][Full Text] [Related]
30. Quantitative proteomics to study a small molecule targeting the loss of von Hippel-Lindau in renal cell carcinomas. Bouhamdani N; Joy A; Barnett D; Cormier K; Léger D; Chute IC; Lamarre S; Ouellette R; Turcotte S Int J Cancer; 2017 Aug; 141(4):778-790. PubMed ID: 28486780 [TBL] [Abstract][Full Text] [Related]
32. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. White NM; Yousef GM BMC Med; 2010 Oct; 8():65. PubMed ID: 20964839 [TBL] [Abstract][Full Text] [Related]
33. Oncotargets in different renal cancer subtypes. Moch H; Montironi R; Lopez-Beltran A; Cheng L; Mischo A Curr Drug Targets; 2015; 16(2):125-35. PubMed ID: 25619751 [TBL] [Abstract][Full Text] [Related]
34. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation. Jang Y; Han J; Kim SJ; Kim J; Lee MJ; Jeong S; Ryu MJ; Seo KS; Choi SY; Shong M; Lim K; Heo JY; Kweon GR Oncotarget; 2015 Nov; 6(35):38127-38. PubMed ID: 26474388 [TBL] [Abstract][Full Text] [Related]
35. Sunitinib, sorafenib and mTOR inhibitors in renal cancer. Radulovic S; Bjelogrlic SK J BUON; 2007 Sep; 12 Suppl 1():S151-62. PubMed ID: 17935273 [TBL] [Abstract][Full Text] [Related]
36. TGFBI-promoted adhesion, migration and invasion of human renal cell carcinoma depends on inactivation of von Hippel-Lindau tumor suppressor. Shang D; Liu Y; Yang P; Chen Y; Tian Y Urology; 2012 Apr; 79(4):966.e1-7. PubMed ID: 22341602 [TBL] [Abstract][Full Text] [Related]
37. Regulation of E2F1 by the von Hippel-Lindau tumour suppressor protein predicts survival in renal cell cancer patients. Mans DA; Vermaat JS; Weijts BG; van Rooijen E; van Reeuwijk J; Boldt K; Daenen LG; van der Groep P; Rowland BD; Jans JJ; Roepman R; Voest EE; van Diest PJ; Verhaar MC; de Bruin A; Giles RH J Pathol; 2013 Sep; 231(1):117-29. PubMed ID: 23744542 [TBL] [Abstract][Full Text] [Related]
38. [Renal cell carcinoma]. Tomita Y Gan To Kagaku Ryoho; 2014 Feb; 41(2):172-7. PubMed ID: 24743196 [TBL] [Abstract][Full Text] [Related]
39. [The expression of hypoxia inducible factor-1,2 alpha in sporadic clear cell renal cell carcinoma and their relationships to the mutations of von Hippel-Lindau gene]. Gong K; Zhang N; Na X; Wu G; Yang XY; Xin DQ; Na YQ Zhonghua Wai Ke Za Zhi; 2005 Mar; 43(6):390-3. PubMed ID: 15854350 [TBL] [Abstract][Full Text] [Related]
40. A Precision Strategy to Cure Renal Cell Carcinoma by Targeting Transglutaminase 2. Kim SY; Keillor JW Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]