These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29165557)

  • 1. Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data.
    Sun B; Perkins NJ; Cole SR; Harel O; Mitchell EM; Schisterman EF; Tchetgen Tchetgen EJ
    Am J Epidemiol; 2018 Mar; 187(3):585-591. PubMed ID: 29165557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principled Approaches to Missing Data in Epidemiologic Studies.
    Perkins NJ; Cole SR; Harel O; Tchetgen Tchetgen EJ; Sun B; Mitchell EM; Schisterman EF
    Am J Epidemiol; 2018 Mar; 187(3):568-575. PubMed ID: 29165572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Imputation for Incomplete Data in Epidemiologic Studies.
    Harel O; Mitchell EM; Perkins NJ; Cole SR; Tchetgen Tchetgen EJ; Sun B; Schisterman EF
    Am J Epidemiol; 2018 Mar; 187(3):576-584. PubMed ID: 29165547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
    Sun B; Tchetgen Tchetgen EJ
    J Am Stat Assoc; 2018; 113(521):369-379. PubMed ID: 30034062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference.
    Tchetgen EJT; Wang L; Sun B
    Stat Sin; 2018 Oct; 28(4):2069-2088. PubMed ID: 33994754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of predictive model performance of an existing model in the presence of missing data.
    Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ
    Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing missing data in the estimation of time-varying treatments in comparative effectiveness research.
    Segura-Buisan J; Leyrat C; Gomes M
    Stat Med; 2023 Nov; 42(27):5025-5038. PubMed ID: 37726937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical inference for missing data mechanisms.
    Zhao Y
    Stat Med; 2020 Dec; 39(28):4325-4333. PubMed ID: 32815184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instability of inverse probability weighting methods and a remedy for nonignorable missing data.
    Li P; Qin J; Liu Y
    Biometrics; 2023 Dec; 79(4):3215-3226. PubMed ID: 37221141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model.
    Malinsky D; Shpitser I; Tchetgen Tchetgen EJ
    J Am Stat Assoc; 2022; 117(539):1415-1423. PubMed ID: 36246417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of inverse probability weighting for dealing with missing data.
    Seaman SR; White IR
    Stat Methods Med Res; 2013 Jun; 22(3):278-95. PubMed ID: 21220355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for nonmonotone missing data using inverse probability weighting.
    Ross RK; Cole SR; Edwards JK; Westreich D; Daniels JL; Stringer JSA
    Stat Med; 2023 Oct; 42(23):4282-4298. PubMed ID: 37525436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On weighting approaches for missing data.
    Li L; Shen C; Li X; Robins JM
    Stat Methods Med Res; 2013 Feb; 22(1):14-30. PubMed ID: 21705435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint.
    Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ
    BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining multiple imputation and inverse-probability weighting.
    Seaman SR; White IR; Copas AJ; Li L
    Biometrics; 2012 Mar; 68(1):129-37. PubMed ID: 22050039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inverse probability weighting (IPW) for evaluating and "correcting" selection bias].
    Narduzzi S; Golini MN; Porta D; Stafoggia M; Forastiere F
    Epidemiol Prev; 2014; 38(5):335-41. PubMed ID: 25387748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving upon the efficiency of complete case analysis when covariates are MNAR.
    Bartlett JW; Carpenter JR; Tilling K; Vansteelandt S
    Biostatistics; 2014 Oct; 15(4):719-30. PubMed ID: 24907708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random.
    Doidge JC
    Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.
    Guo F; Langworthy B; Ogino S; Wang M
    Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome.
    Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.