These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29165992)

  • 1. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique.
    Ramer G; Aksyuk VA; Centrone A
    Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique.
    Lahiri B; Holland G; Centrone A
    Small; 2013 Feb; 9(3):439-45. PubMed ID: 23034929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.
    Reiner E; Weston F; Pleshko N; Querido W
    Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights.
    Jakob DS; Schwartz JJ; Pavlidis G; Grutter KE; Centrone A
    Anal Chem; 2024 Oct; 96(41):16195-16202. PubMed ID: 39365177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the Surface-Enhanced IR Absorption Effect in the Photothermally Induced Resonance AFM-IR Technique toward Nanoscale Chemical Analysis.
    Wang CT; Jiang B; Zhou YW; Jiang TW; Liu JH; Zhu GD; Cai WB
    Anal Chem; 2019 Aug; 91(16):10541-10548. PubMed ID: 31313574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy.
    Quaroni L
    Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of ATR-FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section.
    Chua L; Banas A; Banas K
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tutorial on optical photothermal infrared (O-PTIR) microscopy.
    Prater CB; Kansiz M; Cheng JX
    APL Photonics; 2024 Sep; 9(9):091101. PubMed ID: 39290719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and spectroscopy of domains of the cellular membrane by photothermal-induced resonance.
    Quaroni L
    Analyst; 2020 Aug; 145(17):5940-5950. PubMed ID: 32706007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale imaging and spectroscopy of band gap and defects in polycrystalline photovoltaic devices.
    Yoon Y; Chae J; Katzenmeyer AM; Yoon HP; Schumacher J; An S; Centrone A; Zhitenev N
    Nanoscale; 2017 Jun; 9(23):7771-7780. PubMed ID: 28426088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging.
    Ramer G; Reisenbauer F; Steindl B; Tomischko W; Lendl B
    Appl Spectrosc; 2017 Aug; 71(8):2013-2020. PubMed ID: 28756704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab on a tip: atomic force microscopy - photothermal infrared spectroscopy of atmospherically relevant organic/inorganic aerosol particles in the nanometer to micrometer size range.
    Or VW; Estillore AD; Tivanski AV; Grassian VH
    Analyst; 2018 Jun; 143(12):2765-2774. PubMed ID: 29675539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Chemical Imaging of Individual, Chemotherapeutic Cytarabine-loaded Liposomal Nanocarriers.
    Wieland K; Ramer G; Weiss VU; Allmaier G; Lendl B; Centrone A
    Nano Res; 2019; 12():. PubMed ID: 31275527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy.
    Schwartz JJ; Pavlidis G; Centrone A
    Anal Chem; 2022 Sep; 94(38):13126-13135. PubMed ID: 36099442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.