These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29166040)

  • 1. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.
    Morrison AF; Herbert JM
    J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for Singlet Fission Driven by Vibronic Coherence in Crystalline Tetracene.
    Morrison AF; Herbert JM
    J Phys Chem Lett; 2017 Apr; 8(7):1442-1448. PubMed ID: 28277682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Implementation of the Frenkel-Davydov Exciton Model: A Naturally Parallelizable Approach to Computing Collective Excitations in Crystals and Aggregates.
    Morrison AF; You ZQ; Herbert JM
    J Chem Theory Comput; 2014 Dec; 10(12):5366-76. PubMed ID: 26583220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ab initio exciton model for singlet fission.
    Li X; Parrish RM; Martínez TJ
    J Chem Phys; 2020 Nov; 153(18):184116. PubMed ID: 33187442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Phonon Interaction Model for Singlet Fission in Prototypical Molecular Crystals.
    Xie X; Santana-Bonilla A; Fang W; Liu C; Troisi A; Ma H
    J Chem Theory Comput; 2019 Jun; 15(6):3721-3729. PubMed ID: 30970207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational investigation on singlet and triplet exciton couplings in acene molecular crystals.
    Quarti C; Fazzi D; Del Zoppo M
    Phys Chem Chem Phys; 2011 Nov; 13(41):18615-25. PubMed ID: 21947306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of singlet excitons in oligoacene molecular crystals.
    Yamagata H; Norton J; Hontz E; Olivier Y; Beljonne D; Brédas JL; Silbey RJ; Spano FC
    J Chem Phys; 2011 May; 134(20):204703. PubMed ID: 21639463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets.
    Zimmerman PM; Bell F; Casanova D; Head-Gordon M
    J Am Chem Soc; 2011 Dec; 133(49):19944-52. PubMed ID: 22084927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Computational Strategies for the Calculation of the Electronic Coupling in Intermolecular Energy and Electron Transport Processes.
    López X; Sánchez-Mansilla A; Sousa C; Straatsma TP; Broer R; de Graaf C
    J Phys Chem A; 2023 Dec; 127(50):10717-10731. PubMed ID: 38084088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene.
    Beljonne D; Yamagata H; Brédas JL; Spano FC; Olivier Y
    Phys Rev Lett; 2013 May; 110(22):226402. PubMed ID: 23767738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet fission in linear chains of molecules.
    Ambrosio F; Troisi A
    J Chem Phys; 2014 Nov; 141(20):204703. PubMed ID: 25429953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.
    Kranz JJ; Elstner M
    J Chem Theory Comput; 2016 Sep; 12(9):4209-21. PubMed ID: 27434173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy.
    Zhu T; Wan Y; Huang L
    Acc Chem Res; 2017 Jul; 50(7):1725-1733. PubMed ID: 28678469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ab Initio Exciton Model Including Charge-Transfer Excited States.
    Li X; Parrish RM; Liu F; Kokkila Schumacher SIL; Martínez TJ
    J Chem Theory Comput; 2017 Aug; 13(8):3493-3504. PubMed ID: 28617595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast dynamics of excitons in tetracene single crystals.
    Birech Z; Schwoerer M; Schmeiler T; Pflaum J; Schwoerer H
    J Chem Phys; 2014 Mar; 140(11):114501. PubMed ID: 24655187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures.
    Müller AM; Avlasevich YS; Schoeller WW; Müllen K; Bardeen CJ
    J Am Chem Soc; 2007 Nov; 129(46):14240-50. PubMed ID: 17958421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Scaling Quantum Chemistry Approach to Excited-State Properties via an ab Initio Exciton Model: Application to Excitation Energy Transfer in a Self-Assembled Nanotube.
    Morrison AF; Herbert JM
    J Phys Chem Lett; 2015 Nov; 6(21):4390-6. PubMed ID: 26538050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and dynamics of molecular excitons.
    Bardeen CJ
    Annu Rev Phys Chem; 2014; 65():127-48. PubMed ID: 24313684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.
    Fujita T; Mochizuki Y
    J Phys Chem A; 2018 Apr; 122(15):3886-3898. PubMed ID: 29589927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.