These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 29166301)
1. Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm? Karim ME; Pang M; Platt RW Epidemiology; 2018 Mar; 29(2):191-198. PubMed ID: 29166301 [TBL] [Abstract][Full Text] [Related]
2. Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses. Franklin JM; Eddings W; Glynn RJ; Schneeweiss S Am J Epidemiol; 2015 Oct; 182(7):651-9. PubMed ID: 26233956 [TBL] [Abstract][Full Text] [Related]
3. Using Super Learner Prediction Modeling to Improve High-dimensional Propensity Score Estimation. Wyss R; Schneeweiss S; van der Laan M; Lendle SD; Ju C; Franklin JM Epidemiology; 2018 Jan; 29(1):96-106. PubMed ID: 28991001 [TBL] [Abstract][Full Text] [Related]
4. A comparison of machine learning algorithms and covariate balance measures for propensity score matching and weighting. Cannas M; Arpino B Biom J; 2019 Jul; 61(4):1049-1072. PubMed ID: 31090108 [TBL] [Abstract][Full Text] [Related]
5. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209 [TBL] [Abstract][Full Text] [Related]
6. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions. Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047 [TBL] [Abstract][Full Text] [Related]
8. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain. Tighe PJ; Harle CA; Hurley RW; Aytug H; Boezaart AP; Fillingim RB Pain Med; 2015 Jul; 16(7):1386-401. PubMed ID: 26031220 [TBL] [Abstract][Full Text] [Related]
9. On the role of marginal confounder prevalence - implications for the high-dimensional propensity score algorithm. Schuster T; Pang M; Platt RW Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):1004-7. PubMed ID: 25866189 [TBL] [Abstract][Full Text] [Related]
10. Combining machine learning and matching techniques to improve causal inference in program evaluation. Linden A; Yarnold PR J Eval Clin Pract; 2016 Dec; 22(6):864-870. PubMed ID: 27353301 [TBL] [Abstract][Full Text] [Related]
11. Using machine learning to assess covariate balance in matching studies. Linden A; Yarnold PR J Eval Clin Pract; 2016 Dec; 22(6):844-850. PubMed ID: 27004916 [TBL] [Abstract][Full Text] [Related]
12. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records. Low YS; Gallego B; Shah NH J Comp Eff Res; 2016 Mar; 5(2):179-92. PubMed ID: 26634383 [TBL] [Abstract][Full Text] [Related]
13. Can supervised deep learning architecture outperform autoencoders in building propensity score models for matching? Karim ME BMC Med Res Methodol; 2024 Aug; 24(1):167. PubMed ID: 39095707 [TBL] [Abstract][Full Text] [Related]
14. Comparing the performance of propensity score methods in healthcare database studies with rare outcomes. Franklin JM; Eddings W; Austin PC; Stuart EA; Schneeweiss S Stat Med; 2017 May; 36(12):1946-1963. PubMed ID: 28208229 [TBL] [Abstract][Full Text] [Related]
15. The Balance Super Learner: A robust adaptation of the Super Learner to improve estimation of the average treatment effect in the treated based on propensity score matching. Pirracchio R; Carone M Stat Methods Med Res; 2018 Aug; 27(8):2504-2518. PubMed ID: 28339317 [TBL] [Abstract][Full Text] [Related]
16. Estimating causal effects for survival (time-to-event) outcomes by combining classification tree analysis and propensity score weighting. Linden A; Yarnold PR J Eval Clin Pract; 2018 Apr; 24(2):380-387. PubMed ID: 29230910 [TBL] [Abstract][Full Text] [Related]
17. Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension Using Nationwide Claims Data. Park J; Kim JW; Ryu B; Heo E; Jung SY; Yoo S J Med Internet Res; 2019 Feb; 21(2):e11757. PubMed ID: 30767907 [TBL] [Abstract][Full Text] [Related]
18. Using classification tree analysis to generate propensity score weights. Linden A; Yarnold PR J Eval Clin Pract; 2017 Aug; 23(4):703-712. PubMed ID: 28371206 [TBL] [Abstract][Full Text] [Related]
19. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. Tian Y; Schuemie MJ; Suchard MA Int J Epidemiol; 2018 Dec; 47(6):2005-2014. PubMed ID: 29939268 [TBL] [Abstract][Full Text] [Related]