These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29166832)

  • 21. Performance Analysis in Ski Jumping with a Differential Global Navigation Satellite System and Video-Based Pose Estimation.
    Elfmark O; Ettema G; Groos D; Ihlen EAF; Velta R; Haugen P; Braaten S; Gilgien M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of jumping strategy on kinetic and kinematic variables.
    Jidovtseff B; Quievre J; Harris NK; Cronin JB
    J Sports Med Phys Fitness; 2014 Apr; 54(2):129-38. PubMed ID: 24509983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A system to measure the kinematics during the entire ski jump sequence using inertial sensors.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    J Biomech; 2013 Jan; 46(1):56-62. PubMed ID: 23123073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of Moticon's OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements.
    Stöggl T; Martiner A
    J Sports Sci; 2017 Jan; 35(2):196-206. PubMed ID: 27010531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plantar pressure and EMG activity of simulated and actual ski jumping take-off.
    Virmavirta M; Komi PV
    Scand J Med Sci Sports; 2001 Oct; 11(5):310-4. PubMed ID: 11696217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knee angular displacement and extensor muscle activity in telemark skiing and in ski-specific strength exercises.
    Nilsson J; Haugen P
    J Sports Sci; 2004 Apr; 22(4):357-64. PubMed ID: 15161109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic Determination of the Aerial Phase in Ski Jumping.
    Elfmark O; Ettema G; Jølstad P; Gilgien M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concurrent Development of Endurance Capacity and Explosiveness: Training Characteristics of World-Class Nordic-Combined Athletes.
    Tønnessen E; Rasdal V; Svendsen IS; Haugen TA; Hem E; Sandbakk Ø
    Int J Sports Physiol Perform; 2016 Jul; 11(5):643-51. PubMed ID: 26561961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Humans adjust control to initial squat depth in vertical squat jumping.
    Bobbert MF; Casius LJ; Sijpkens IW; Jaspers RT
    J Appl Physiol (1985); 2008 Nov; 105(5):1428-40. PubMed ID: 18719236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ski jumping boots limit effective take-off in ski jumping.
    Virmavirta M; Komi PV
    J Sports Sci; 2001 Dec; 19(12):961-8. PubMed ID: 11820690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.
    Müller E; Schwameder H
    J Sports Sci; 2003 Sep; 21(9):679-92. PubMed ID: 14579866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A power function profile of a ski jumping in-run hill.
    Zanevskyy I
    Acta Bioeng Biomech; 2011; 13(4):3-10. PubMed ID: 22339056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.
    Patterson C; Raschner C; Platzer HP
    J Strength Cond Res; 2009 May; 23(3):779-87. PubMed ID: 19387401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical Comparison of Loaded Countermovement Jumps Performed on Land and in Water.
    Louder TJ; Bressel E; Nardoni C; Dolny DG
    J Strength Cond Res; 2019 Jan; 33(1):25-35. PubMed ID: 29194184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flight style optimization in ski jumping on normal, large, and ski flying hills.
    Jung A; Staat M; Müller W
    J Biomech; 2014 Feb; 47(3):716-22. PubMed ID: 24388531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    J Sports Sci; 2014; 32(6):591-600. PubMed ID: 24117224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the Hang High Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.
    Oranchuk DJ; Robinson TL; Switaj ZJ; Drinkwater EJ
    J Strength Cond Res; 2019 Jan; 33(1):17-24. PubMed ID: 28426514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ground reaction forces associated with an effective elementary school based jumping intervention.
    McKay H; Tsang G; Heinonen A; MacKelvie K; Sanderson D; Khan KM
    Br J Sports Med; 2005 Jan; 39(1):10-4. PubMed ID: 15618332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Power-Force-Velocity Profiling as a Function of Used Loads and Task Experience.
    Fessl I; Wiesinger HP; Kröll J
    Int J Sports Physiol Perform; 2022 May; 17(5):694-700. PubMed ID: 35158325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic and kinetic variations among three depth jump conditions in male NCAA division III athletes.
    Smith JP; Kernozek TW; Kline DE; Wright GA
    J Strength Cond Res; 2011 Jan; 25(1):94-102. PubMed ID: 20093969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.