BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29166834)

  • 1. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.
    Mukherjee K; Vilcinskas A
    Virulence; 2018 Jan; 9(1):402-413. PubMed ID: 29166834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects.
    Vilcinskas A
    Virulence; 2010; 1(3):206-14. PubMed ID: 21178444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming the virulence: Insect defense molecules navigating the epigenetic landscape of Metarhizium robertsii.
    Hussain A
    Virulence; 2018 Jan; 9(1):447-449. PubMed ID: 29505312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of parasitic fungi and insect hosts.
    Joop G; Vilcinskas A
    Zoology (Jena); 2016 Aug; 119(4):350-8. PubMed ID: 27448694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.
    Heitmueller M; Billion A; Dobrindt U; Vilcinskas A; Mukherjee K
    Infect Immun; 2017 Oct; 85(10):. PubMed ID: 28739824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic mechanisms mediate the experimental evolution of resistance against parasitic fungi in the greater wax moth Galleria mellonella.
    Mukherjee K; Dubovskiy I; Grizanova E; Lehmann R; Vilcinskas A
    Sci Rep; 2019 Feb; 9(1):1626. PubMed ID: 30733453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii.
    Wang Z; Jiang Y; Li Y; Feng J; Huang B
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4859-4868. PubMed ID: 31025075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella.
    Vogel H; Altincicek B; Glöckner G; Vilcinskas A
    BMC Genomics; 2011 Jun; 12():308. PubMed ID: 21663692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.
    Lin L; Fang W; Liao X; Wang F; Wei D; St Leger RJ
    PLoS One; 2011; 6(12):e28984. PubMed ID: 22194968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel cascade allows Metarhizium robertsii to distinguish cuticle and hemocoel microenvironments during infection of insects.
    Zhang X; Meng Y; Huang Y; Zhang D; Fang W
    PLoS Biol; 2021 Aug; 19(8):e3001360. PubMed ID: 34347783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi-mediated suppression of insect metalloprotease inhibitor (IMPI) enhances Galleria mellonella susceptibility to fungal infection.
    Grizanova EV; Coates CJ; Butt TM; Dubovskiy IM
    Dev Comp Immunol; 2021 Sep; 122():104126. PubMed ID: 33965446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MrSt12 implicated in the regulation of transcription factor AFTF1 by Fus3-MAPK during cuticle penetration by the entomopathogenic fungus Metarhizium robertsii.
    Meng Y; Zhang X; Guo N; Fang W
    Fungal Genet Biol; 2019 Oct; 131():103244. PubMed ID: 31228645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of entomopathogenic fungi with the host immune system.
    Qu S; Wang S
    Dev Comp Immunol; 2018 Jun; 83():96-103. PubMed ID: 29355579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.
    Wang Y; Wang T; Qiao L; Zhu J; Fan J; Zhang T; Wang ZX; Li W; Chen A; Huang B
    Appl Microbiol Biotechnol; 2017 May; 101(10):4215-4226. PubMed ID: 28238081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii.
    Duan Z; Chen Y; Huang W; Shang Y; Chen P; Wang C
    Autophagy; 2013 Apr; 9(4):538-49. PubMed ID: 23380892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MrSVP, a secreted virulence-associated protein, contributes to thermotolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.
    Xie T; Wang Y; Yu D; Zhang Q; Zhang T; Wang Z; Huang B
    BMC Microbiol; 2019 Jan; 19(1):25. PubMed ID: 30691387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid biology in fungal stress and virulence: Entomopathogenic fungi.
    Keyhani NO
    Fungal Biol; 2018 Jun; 122(6):420-429. PubMed ID: 29801785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal infection dynamics in response to temperature in the lepidopteran insect Galleria mellonella.
    Kryukov VY; Yaroslavtseva ON; Whitten MMA; Tyurin MV; Ficken KJ; Greig C; Melo NR; Glupov VV; Dubovskiy IM; Butt TM
    Insect Sci; 2018 Jun; 25(3):454-466. PubMed ID: 27900825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium.
    Hu S; Bidochka MJ
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5371-5383. PubMed ID: 32318770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.